

Liquid Trace Solid Tumor

Patient Name: Date of Birth: Gender (M/F):			Ordering Physician: Accession #: Specimen Type:	Peripheral Blood
Client: Case #:			Specimen ID:	
Body Site:	PERIPHERAL BLOOD			
Collected Date:			Indication for Testing:	Carcinoma of Pancreas
Received Date:			Stage:	Metastasis

Detected Genomic Alterations										
Level 1 (FDA- Approved)	Level 2 (Standard of Care)	Level 3 (Clinical Evidence)	Level 4 (Biological Evidence)	Other						
No evidence of BRCA1/2 or PALB2 mutations	-	KRAS (A146V)	TET2, KMT2C, CTCF	No detectable autosomal chromosomal structural gain or loss						

Results Summary

Reported Date:

- -Low level mutations in KMT2C, TET2, CTCF, and KRAS genes
 - -No detectable autosomal chromosomal structural gain or loss
 - -No evidence of BRCA1/2 or PALB2 mutations
 - -EBV viral RNA: Not detected
 - -HPV viral RNA: Not detected

-These findings suggest the presence of circulating solid tumor DNA/RNA. The TET2 mutation is most likely in myeloid cells, consistent with CHIP (clonal hematopoiesis of indeterminate potential).

-KRAS (A146V) mutation suggests resistance to Sotorasib, but possible response to ERK/MEK inhibitors (Selumetinib, Trametinib, Binimetinib, Vemurafenib, Cobimetinib..).

Tumor Heterogeneity

There is an abnormal low-level clone with KMT2C, TET2, CTCF, and KRAS mutations.

Diagnostic Implicatio	ns
KMT2C, TET2, CTCF, KRAS	These findings suggest the presence of circulating solid tumor DNA/RNA (see result summary).

Relevant Alteration Associated with Resistance

KRAS mutations suggest resistance to targeted anti-EGFR therapy.

Levels 2, 3 & 4 (Stand	Levels 2, 3 & 4 (Standard of Care and Clinical/Biological Evidence)							
TET2	DNA methyltransferase inhibitors							
KRAS	ERK/MEK inhibitors							

Relevant Genes with NO Alte	ration	
No evidence of mutation in: NRAS, EGFR, BRAF, TP53	No evidence of: FGFR1, FGFR2, FGFR3, FGFR4, NTRK, ALK, ROS1, RET Fusion	No evidence of MET14 deletion, EGFR Viii

Test Description:

This is a comprehensive molecular profile of cell-free DNA (cfDNA) and cell-free RNA (cfRNA), which uses next generation sequencing (NGS) to identify molecular abnormalities (including SNVs, INDELS, CNVs, Fusions, EBV and HPV) in DNA of 284 genes and RNA in 1501 genes associated with solid tumors. Whenever possible, clinical relevance and implications of detected abnormalities are described below.

Biological relevance of detected Alterations

- KMT2C. This gene is a member of the myeloid/lymphoid or mixed-lineage leukemia (MLL) family and encodes a nuclear protein with an AT hook DNA-binding domain, a DHHC-type zinc finger, six PHD-type zinc fingers, a SET domain, a post-SET domain and a RING-type zinc finger. This protein is a member of the ASC-2/NCOA6 complex (ASCOM), which possesses histone methylation activity and is involved in transcriptional coactivation. [provided by RefSeq, Jul 2008]
- TET2. The protein encoded by this gene is a methylcytosine dioxygenase that catalyzes the conversion of methylcytosine to 5hydroxymethylcytosine. The encoded protein is involved in myelopoiesis, and defects in this gene have been associated with several myeloproliferative disorders. Two variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2011]
- CTCF. This gene is a member of the BORIS + CTCF gene family and encodes a transcriptional regulator protein with 11 highly conserved zinc finger (ZF) domains. This nuclear protein is able to use different combinations of the ZF domains to bind different DNA target sequences and proteins. Depending upon the context of the site, the protein can bind a histone acetyltransferase (HAT)-containing complex and function as a transcriptional activator or bind a histone deacetylase (HDAC)-containing complex and function as a transcriptional repressor. If the protein is bound to a transcriptional insulator element, it can block communication between enhancers and upstream promoters, thereby regulating imprinted expression. Mutations in this gene have been associated with invasive breast cancers, prostate cancers, and Wilms' tumors. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2010]
- KRAS. This gene, a Kirsten ras oncogene homolog from the mammalian ras gene family, encodes a protein that is a member of the small GTPase superfamily. A single amino acid substitution is responsible for an activating mutation. The transforming protein that results is implicated in various malignancies, including lung adenocarcinoma, mucinous adenoma, ductal carcinoma of the pancreas and colorectal carcinoma. Alternative splicing leads to variants encoding two isoforms that differ in the C-terminal region. [provided by RefSeq, Jul 2008]

Drug Information

Binimetinib (Mektovi)

Binimetinib is an orally available inhibitor of mitogen-activated protein kinase kinase 1 and 2 (MEK1/2) with potential antineoplastic activity. Binimetinib, noncompetitive with ATP, binds to and inhibits the activity of MEK1/2. Inhibition of MEK1/2 prevents the activation of MEK1/2dependent effector proteins and transcription factors, which may result in the inhibition of growth factor-mediated cell signaling. This may eventually lead to an inhibition of tumor cell proliferation and an inhibition in production of various inflammatory cytokines including interleukin-1, -6 and tumor necrosis factor. MEK1/2 are dual-specificity threonine/tyrosine kinases that play key roles in the activation of the RAS/RAF/MEK/ERK pathway and are often upregulated in a variety of tumor cell types.

Cobimetinib (Cotellic)

Cobimetinib is a reversible inhibitor of mitogen-activated protein kinase 1 (MAPK)/extracellular signal regulated kinase 1 (MEK1) and MEK2. MEK inhibitor Cobimetinib specifically binds to and inhibits the catalytic activity of MEK1, resulting in inhibition of extracellular signal-related kinase 2 (ERK2) phosphorylation and activation and decreased tumor cell proliferation. Cobimetinib targets kinase activity in the RAS/RAF/MEK/ERK pathway.

Trametinib (Mekinist)

Trametinib is an orally bioavailable inhibitor of mitogen-activated protein kinase kinase (MEK MAPK/ERK kinase) with potential antineoplastic activity. Trametinib specifically binds to and inhibits MEK 1 and 2, resulting in an inhibition of growth factor-mediated cell signaling and cellular proliferation in various cancers. MEK 1 and 2, dual specificity threonine/tyrosine kinases often upregulated in various cancer cell types, play a key role in the activation of the RAS/RAF/MEK/ERK signaling pathway that regulates cell growth.

Potential Clinical Trials

Trial URL	Status	Title	Disease	Drug	Sites
https://ClinicalTrials.g ov/show/NCT050527 23	Recruiting	Cabozantinib and Pembrolizumab in Metastatic Pancreas	Metastatic Pancreatic Cancer	Cabozantinib Pembrolizumab	University of Kentucky Markey Cancer Center, Lexington, Kentucky, United States
https://ClinicalTrials.g ov/show/NCT051027 21	Recruiting	Trial of Immunotherapy With Avelumab and Pepinemab As Second Line For Patients With Metastatic Pancreatic Adenocarcinoma	Metastatic Pancreatic Cancer	Avelumab and Pepinemab	University of Rochester Medical Center, Rochester, New York, United States
https://ClinicalTrials.g ov/show/NCT023401 17	Recruiting	Study of Combined SGT-53 Plus Gemcitabine/Nab- Paclitaxel for Metastatic Pancreatic Cancer	Metastatic Pancreatic Cancer	SGT-53 nab-paclitaxel Gemcitabine	Mary Crowley Cancer Research Center, Dallas, Texas, United States
https://ClinicalTrials.g ov/show/NCT019549 92	Recruiting	Glufosfamide Versus 5-FU in Second Line Metastatic Pancreatic Cancer	Metastatic Pancreatic Cancer	Glufosfamide Fluorouracil	Comprehensive Cancer Care Medical Group, Inc., Corona, California, United States Hao Wei Zhang MD, Inc., Los Angeles, California, United States Innovative Clinical Research Institute, Whittier, California, United States

Detailed Results

Single N	Single Nucleotide Variant (SNV) and Insertions-Deletions (INDELS)											
Gene Name	Hgvsp	Hgvsp Hgvsc Aminoacids Codons Consequence Allele Read Prediction on prediction of the sector of the										
KMT2C	NP_733751.2:p. Cys394Tyr	NM_170606.2:c. 1181G>A	C/Y	tGc/tAc	missense_variant	4.89	2576	0				
TET2	NP_001120680. 1:p.His1382Arg	NM_001127208. 2:c.4145A>G	H/R	cAc/cGc	missense_variant	2.72	956	deleterious (0)				
CTCF	NP_006556.1:p. Thr374lle	NM_006565.3:c. 1121C>T	T/I	aCt/aTt	missense_variant	1.56	768	deleterious (0)				

KRAS	NP_203524.1:p. Ala146Val	NM_033360.2:c. 437C>T	A/V	gCa/gTa	missense_variant	0.43	1172	deleterious (0.02)
------	-----------------------------	--------------------------	-----	---------	------------------	------	------	-----------------------

Methodology and Test Background

This is a next generation sequencing (NGS) test that analyzes cfDNA for abnormalities in 284 genes that are reported to be altered in various types of hematologic neoplasms. Nucleic acid is isolated from plasma. Testing is performed using parallel sequencing of the coding DNA of the listed genes. This includes sequencing of all the exons as well as 50 nucleotides at the 5' and 3' ends of each coding exon. Using UMI, our sequencing method has a typical sensitivity of less than 0.1% for detecting common specific mutations and 0.1% for other mutations. Known hot spots in specific genes such as IDH1/2, NRAS, and KRAS are reported at levels of 0.01% and higher when both cfRNA and cfDNA results are combined. Performance of the assay may vary depending on the quantity and quality of nucleic acid, sample preparation and sample age. The assay is designed to detect significant gene amplification and deletion in addition to various single nucleotide variations (SNV) and indels. Indels greater than 80bp may not be detected. In addition to cfDNA analysis, targeted cfRNA NGS analysis is performed. This is a next generation sequencing (NGS) test that analyzes targeted cfRNA on 1,501 genes associated with hematologic neoplasms. It is based on hybrid capture of targeted cfRNA. Duplicates are excluded for levels measurements. While the major focus of the analysis is the detection of fusion mRNA, mutations in the expressed cfRNA of the analyzed genes are also analyzed and reported.

All detected fusion transcripts are reported. This test specifically covers translocations that lead to the expression of fusion RNA. Translocations that lead to deregulation of expression can be addressed by this test if compared to the expression proper normal control. Since the clinical relevance of the expression level of most of these genes is not characterized at this time, only few specific genes (MYC, BCL2, CD274, CD19, CD22, CD79A, CD79B) will be commented on. .The sensitivity of this assay in detecting fusion mRNA is between 1% and 5%. The Universal Human Reference (UHR) RNA is also used as control.

The table below contains a partial list of the tested DNA genes. For a complete list, please go to: https://genomictestingcooperative.com/genomic-tests/liquid-trace-solid-tumor/ (click the DNA tab)

The table below contains a partial list of the tested RNA genes (Fusions/Expression). For a complete list, please go to: https://genomictestingcooperative.com/genomic-tests/liquid-trace-solid-tumor/ (click the RNA tab)

Tested genes

Gene	s Teste	ed for <i>i</i>	Abnorn	nalities	s in Co	ding Se	equenc	e								
ABL1	AURKA	BRCA2	CDK4	CXCR4	ERBB4	FGF6	GNAQ	IL7R	LRP1B	MRE11	NPM1	PLCG1	RAD51	SMARCB1	TERT	XRCC3
ACVR1B	AURKB	BRIP1	CDK6	CYLD	ERG	FGFR1	GNAS	INHBA	MAP2K1	MSH2	NRAS	PMS1	RAF1	SMC1A	TET2	ZNF217
AKT1	AURKC	BTK	CDKN2A	DAXX	ESR1	FGFR2	GREM1	IRF4	MAP2K2	MSH6	NSD1	PMS2	RB1	SMC3	TGFBR2	ZRSR2
AKT2	AXIN1	CALR	CDKN2B	DDR2	ETV6	FGFR3	GRIN2A	JAK1	MAP2K4	MTOR	NTRK1	POLD1	RET	SM0	TNFAIP3	NFE2
AKT3	AXIN2	CARD11	CDKN2C	DICER1	EX01	FGFR4	H3-3A	JAK2	MAP3K1	MUTYH	NTRK2	POLE	RHEB	SOCS1	TNFRSF14	UBA1
ALK	B2M	CBL	CEBPA	DNM2	EZH2	FH	HGF	JAK3	MAP3K14	MYC	NTRK3	PPM1D	RHOA	SOX2	TP53	STAT5B
AMER1	PRDM1	AR	BCL2L1	CCND1	CIC	EED	FANCA	FLT4	HOXB13	KDM6A	MDM2	MYD88	PAX5	PRKAR1A	ARAF	BCL6
APC	BCL2	CBLC	CHEK2	DOT1L	TENT5C	FLT3	HNF1A	KDM5C	MCL1	MYCN	PALB2	PRDM1	RNF43	SPOP	TSC1	ELANE
AR	BCL2L1	CCND1	CIC	EED	FANCA	FLT4	HOXB13	KDM6A	MDM2	MYD88	PAX5	PRKAR1A	ROS1	SRC	TSC2	ANKRD26
ARAF	BCL6	CCND3	CREBBP	EGFR	FANCC	F0XL2	HRAS	KDR	MDM4	NF1	PBRM1	PRKDC	RUNX1	SRSF2	TSHR	SAMD9L
ARID1A	BCOR	CCNE1	CRLF2	EGLN1	FANCD2	FUBP1	HSP90AA1	KEAP1	MED12	NF2	PDGFRA	PRSS1	SDHB	STAG2	U2AF1	SAMD9
ARID1B	BCORL1	CD274	CSF1R	EP300	FANCE	GALNT12	ID3	КІТ	MEF2B	NFE2L2	PDGFRB	PTCH1	SETBP1	STAT3	U2AF2	DDX41
ARID2	BCR	CD79A	CSF3R	EPAS1	FANCF	GATA1	IDH1	KMT2A	MEN1	NFKBIA	PHF6	PTEN	SETD2	STK11	VHL	-
ASXL1	BIRC3	CD79B	CTCF	EPHA3	FANCG	GATA2	IDH2	KMT2B	MET	NKX2-1	PIK3CA	PTPN11	SF3B1	SUFU	NSD2	-
ATM	BLM	CDC73	CTNNA1	EPHA5	FAS	GATA3	IGF1R	KMT2C	MITF	NOTCH1	PIK3R1	RAC1	SMAD2	SUZ12	WT1	-
ATR	BRAF	CDH1	CTNNB1	ERBB2	FBXW7	GEN1	IKZF1	KMT2D	MLH1	NOTCH2	PIK3R2	RAD21	SMAD4	TAL1	XP01	-
ATRX	BRCA1	CDK12	CUX1	ERBB3	FGF4	GNA11	IKZF3	KRAS	MPL	NOTCH3	PIM1	RAD50	SMARCA4	TCF3	XRCC2	-

Reference

- 3. The Significance of Targeting Poly (ADP-Ribose) Polymerase-1 in Pancreatic Cancer for Providing a New Therapeutic Paradigm. Jeong KY, Parl MH. Jeong KY, et al. Int J Mol Sci. 2021 Mar 29;22(7):3509. doi: 10.3390/ijms22073509. Int J Mol Sci. 2021. PMID: 33805293
- 4. Pancreas cancer: Therapeutic trials in metastatic disease. Smithy JW, O'Reilly EM. Smithy JW, et al. J Surg Oncol. 2021 May;123(6):1475-1488. doi: 10.1002/jso.26359. J Surg Oncol. 2021. PMID: 33831245
- 5. Chemotherapy for pancreatic cancer. Springfeld C, Jger D, Bchler MW, Strobel O, Hackert T, Palmer DH, Neoptolemos JP. Springfeld C, et al. Presse Med. 2019 Mar;48(3 Pt 2):e159-e174. doi: 10.1016/j.lpm.2019.02.025. Epub 2019 Mar 15. Presse Med. 2019. PMID: 30879894
- Trametinib and Hydroxychloroquine (HCQ) Combination Treatment in KRAS-Mutated Advanced Pancreatic Adenocarcinoma: Detailed Description of Two Cases. Xavier CB, Marchetti KR, Castria TB, Jardim DLF, Fernandes GS. Xavier CB, et al. J Gastrointest Cancer. 2021 Mar;52 (1):374-380. doi: 10.1007/s12029-020-00556-z. Epub 2020 Nov 23. J Gastrointest Cancer. 2021. PMID: 33225411

Electronic Signature

Ahmad Charifa, M.D.

The test (sample processing, sequencing and data generation) was performed at Genomic Testing Cooperative, LCA, Genomic Testing Cooperative, LCA, 175 Technology Drive, Suite 100, Irvine, CA 92618. Medical Director Maher Albitar, M.D. Analysis of the data was performed by Genomic Testing Cooperative, LCA, 175 Technology Drive, Suite 100, Irvine, CA 92618. Medical Director: Maher Albitar, M.D.

The test was developed and its performance characteristics have been determined by Genomic Testing Cooperative, LCA. This test has not been approved by the FDA. The FDA has determined such clearance or approval is not necessary. This laboratory is CLIA certified to perform high complexity clinical testing.