
Receiver operating characteristic (ROC) curve for prediction of aGVHD. The area under the curve (AUC) is 0.950

Multiple studies have demonstrated that diffuse large B-cell lymphoma 

(DLBCL) can be divided into subgroups based on their biology. However, 

these biological subgroups overlap clinically. While R-CHOP (rituximab, 

cyclophosphamide, doxorubicin, vincristine, and prednisone) remains the 

standard of care for treating patients with DLBCL, predicting which patients 

will not benefit from such therapy is important so that alternative therapy or 

clinical trials can be considered. Most of the studies stratifying patients 

select biomarkers first, then explore how these biomarkers can stratify 

patients based on outcome. We explored the potential of using machine 

learning to first group patients with DLBCL based on survival, then 

isolating the biomarkers necessary for predicting these survival subgroups. 

Using machine learning we sought to optimally 

stratify patients with DLBCL treated with R-

CHOP based on their overall survival.  Using 

another machine learning approach, we select 

RNA biomarkers generated from targeted NGS 

to predict these survival subgroups accurately. 

RNA was extracted from tissue paraffin blocks from 379 R-CHOP 

treated patients with de novo DLBCL, and from 247 patients with 

extranodal DLBCL. A targeted hybrid capture RNA panel of 1408 

genes was used for next generation sequencing (NGS). Sequencing 

was performed using an Illumina NextSeq 550 System platform. 

Ten million reads per sample in a single run were required, and the 

read length was 2 × 150 bp. An expression profile was generated 

from the sequencing coverage profile of each individual sample 

using Cufflinks. A machine learning system was developed to 

classify patients into four groups based on their overall survival. 

This machine learning approach based on naïve Bayesian algorithm 

was also used to discover the relevant subset of genes with which 

to classify patients into each of the four survival groups. To 

eliminate the underflow problem commonly associated with the 

standard Naïve Bayesian classifiers, we applied Geometric Mean 

Naïve Bayesian (GMNB) as the classifier to predict the survival 

group for each patient. 

1) Patients with DLBCL can be stratified to three groups with 

significantly different outcome upon treatment with R-CHOP

2) Expression profile of 180 genes using NGS is adequate for 

distinguishing between these three subgroups

3) Patients with intermediate outcome are heterogenous 

group and the use of different biomarkers is necessary for 

distinguishing these subgroups.

4) Only TP53 abnormalities and IPI remained independent 

predictor of survival in addition to the expression model.

5) Cell of origin, MYC and BCL2 abnormalities are weak 

predictor of survival and not independent of the expression 

model.
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Developing a naïve model for the survival of patients with DLBCL
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Selecting 180 biomarkers for predicting 

survival groups using machine learning 

and validation of the prediction model
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Correlation with cell of origin (COO) 

classification and other clinical prognostic 

markers

N=379 Beta
Standard 

Error

Beta/Coefficient

p
Hazar

d ratio

Hazard ratio

95% 

lower

95% 

upper

95% 

lower

95% 

upper

Covariates: Survival groups,  cell of origin, and IPI (>2)

Survival 

classification
0.55 0.07 0.40 0.69 0.000000 1.73 1.49 2.00

GCB vs ABC -0.03 0.18 -0.37 0.32 0.869145 0.97 0.69 1.37

IPI 0.88 0.17 0.54 1.21 0.000000 2.41 1.72 3.36

Covariates: Survival groups, IPI (>2), cell of origin, and TP53 mutation

Survival 

classification
0.53 0.08 0.39 0.68 0.000000 1.71 1.47 1.98

IPI 0.84 0.17 0.50 1.18 0.000001 2.32 1.66 3.24

COO Classification 0.04 0.18 -0.31 0.40 0.816543 1.04 0.73 1.49

Mute.TP53 0.37 0.19 0.00 0.73 0.048156 1.44 1.00 2.08

Covariates: Survival groups, IPI (>2), cell of origin, Mutations in MYD88, CD79B, and TP53 

mutation

Survival 

classification
0.54 0.08 0.40 0.69 0.000000 1.72 1.49 2.00

IPI 0.87 0.17 0.53 1.21 0.000000 2.39 1.71 3.36

COO Classification 0.13 0.19 -0.24 0.50 0.491261 1.14 0.79 1.64

Mute.MYD88 -0.45 0.22 -0.88 -0.02 0.041843 0.64 0.41 0.98

Mute.CD79B 0.06 0.32 -0.55 0.68 0.841714 1.06 0.57 1.98

Mute. TP53 0.38 0.19 0.01 0.74 0.044687 1.46 1.01 2.10

Covariates: Survival groups, IPI (>2), cell of origin, TP53 mutation, and MYC expression 

(above upper 25 percentile)

Survival 

classification
0.54 0.08 0.39 0.69 0.000000 1.71 1.47 1.99

IPI 0.84 0.17 0.51 1.18 0.000001 2.32 1.66 3.24

Classification 0.04 0.18 -0.31 0.40 0.816151 1.04 0.73 1.49

Mute.TP53 0.37 0.19 0.00 0.74 0.048720 1.45 1.00 2.11

MYC U25% -0.03 0.18 -0.39 0.33 0.878706 0.97 0.68 1.39

Covariates: Survival groups, IPI (>2), cell of origin, TP53 mutation, and MYC expresion 

(continuous variable)

Survival 

classification
0.55 0.08 0.41 0.70 0.000000 1.74 1.50 2.02

IPI 0.85 0.17 0.52 1.19 0.000001 2.35 1.68 3.28

Classification 0.03 0.18 -0.33 0.38 0.886603 1.03 0.72 1.46

Mute.TP53 0.41 0.19 0.04 0.78 0.028204 1.51 1.04 2.18

MYC 0.00 0.00 0.00 0.00 0.150307 1.00 1.00 1.00

Covariates: Survival groups, IPI (>2), cell of origin, TP53 mutation, and expression of MYC 

and IRF4 (continuous) 

Survival 

Classification
0.59 0.08 0.43 0.74 0.000000 1.80 1.54 2.09

IPI 0.85 0.17 0.51 1.18 0.000001 2.33 1.67 3.26

COO classification 0.21 0.21 -0.19 0.61 0.308746 1.23 0.82 1.84

Mute.TP53 0.43 0.19 0.06 0.80 0.022837 1.54 1.06 2.22

MYC mRNA 0.00 0.00 0.00 0.00 0.124518 1.00 1.00 1.00

IRF4 mRNA 0.00 0.00 0.00 0.00 0.066811 1.00 1.00 1.00

Multivariate survival analysis
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Patient Characterstics
Characterstics Number (%)
No. of patients 379

Age
<60 164 (43%)
≥60 215 (57%)
Sex

Male 210 (55%)
Female 169 (45%

Cell of origin
GCB 198 (52%)
ABC 181 (48%)

Validation of the approach using an independent group of patients

Levels of MYC mRNA in various 

survival groups

Cox proportional hazard regression multivariate model incorporating the survival 

classification with COO and the IPI (IPI ≤2 vs IPI >2), survival classification and 

IPI were the only independent predictors of survival.  In this model, COO was no 

longer a predictor of survival. In a multivariate model incorporating age without 

IPI, age was significant independent predictor of survival (P = 0.01). Poor survival 

subgroup (SS) had significantly (P = 0.01) higher percentage of patients at age 

above 60. This raises the possibility that age and possible death from causes other 

than lymphoma--and not only biology-contribute to the poor survival in the SS 

subgroup. 
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