

Received Date:

Solid Tumor Profile Plus

Patient Name:		Ordering Physician:	
Date of Birth:		Physician ID:	
Gender (M/F):		Accession #:	
Client:		Specimen Type:	
Case #:		Specimen ID:	
Body Site:	LUNG		
MRN:		Indication for Testing:	
Collected Date:			

Detected Genomic Alterations											
Level 1 (FDA- Approved)	Level 2 (Standard of Care)	Level 3 (Clinical Evidence)	Level 4 (Biological Evidence)	Other							
EGFR (exon 19 deletion)	-No evidence of microsatellite instability -Tumor Mutation Burden Low: 5 Mut/Mb -Homologous recombination deficiency (HRD): Negative	ARID1A, EP300, TP53	IKBKE	-No evidence of KRAS, BRAF, MET, ALK or ERBB2 mutations -No evidence of ALK, RET, ROS or NTRK fusion							
PD-L1 testing by im	munohistochemistry (I	HC): Clone SP263: Tu	mor cells: <1%; Immu	ne cells: <1%; Tumor							

Results Summary

Proportion Score (TPS): <1

- -Low-level mutations in IKBKE, EGFR (exon 19), ARID1A, EP300, and TP53 genes
 - -No evidence of microsatellite instability
 - -Tumor Mutation Burden Low: 5 Mut/Mb
 - -Homologous recombination deficiency (HRD): Negative
 - -No evidence of fusion mRNA involving ALK, RET, ROS1, or NTRK
 - -EBV viral RNA: Not detected
 - -HPV viral RNA: Not detected
 - -TTV viral RNA: Not detected
 - -HLA Genotyping:

-HLA-A: A*03:01-A*03:01 -HLA-B: B*13:01-B*52:01 -HLA-C: C*04:03-C*12:02

-EGFR mutation suggests response to EGFR tyrosine kinase inhibitors (TKIs) treatment.

-ARID1A mutation suggests increased sensitivity to radiation therapy and PARP inhibitors.

-EP300 gene mutation suggests possible response to BET (Bromodomain Extra-Terminal) inhibitors.

-TP53 mutation suggests possible response to eprenetapopt (APR-246), Aurora kinase A and Wee1 inhibitors.

Tumor Heterogeneity

There is an abnormal low-level clone with IKBKE, EGFR (exon 19), ARID1A, EP300, and TP53 mutations.

Diagnostic Implications										
IKBKE, EGFR (exon 19), ARID1A, EP300, TP53	These findings are consistent with lung cancer									

FDA-Approved Therapeutics								
EGFR (exon 19)	Afatinib, Erlotinib, Gefitinib, Osimertinib, Erlotinib + Ramucirumab,							

Relevant Alteration Associated with Resistance

TP53 mutation is associated with resistance to therapy.

Levels 2, 3 & 4 (Standard of Care and Clinical/Biological Evidence)								
EGFR (exon 19)	EGFR tyrosine kinase inhibitors (TKIs)							
ARID1A	sensitivity to radiation therapy and PARP inhibitors							
EP300	Bromodomain Extra-Terminal (BET) inhibitors							
TP53	Aurora kinase A inhibitors, Wee1 inhibitors, Chk1 inhibitors, kevetrin, APR-246, nutlins, gene therapy							

Relevant Genes with NO Alteration											
-No evidence of mutation in KRAS, NRAS, BRAF, or BRCA 1/2 -No specific mutation in DPYD gene, associated with enzymatic deficiency	No evidence of fusion mRNA involving ALK, RET, ROS1, or NTRK	-No evidence of MET14 deletion or EGFR Viii -No evidence of ERBB2 (HER2) amplification									

Test Description:

This is a comprehensive molecular profile which uses next generation sequencing (NGS) to identify molecular abnormalities, including single nucleotide variants (SNVs), insertions/deletions (indels), copy number variants (CNVs), fusions, tumor mutational burden (TMB), microsatellite instability (MSI), homologous recombination deficiency (HRD), B- and T-cell clonality, and viruses (HPV, EBV, and TTV), in DNA of 434 genes and RNA in greater than 1600 genes implicated in solid tumors. Whenever possible, clinical relevance and implications of detected abnormalities are described below.

Biological relevance of detected Alterations

- IKBKE. IKBKE is a noncanonical I-kappa-B (see MIM 164008) kinase (IKK) that is essential for regulating antiviral signaling pathways. IKBKE
 has also been identified as a breast cancer (MIM 114480) oncogene and is amplified and overexpressed in over 30% of breast carcinomas and
 breast cancer cell lines (Hutti et al., 2009 [PubMed 19481526]). [supplied by OMIM, Oct 2009]
- EGFR. EGFR is widely recognized for its importance in cancer. Amplification and mutations have been shown to be driving events in many cancer types. Its role in non-small cell lung cancer, glioblastoma and basal-like breast cancers has spurred many research and drug development efforts. Tyrosine kinase inhibitors have shown efficacy in EGFR amplfied tumors, most notably gefitinib and erlotinib. Mutations in EGFR have been shown to confer resistance to these drugs, particularly the variant T790M, which has been functionally characterized as a resistance marker for both of these drugs. The later generation TKI's have seen some success in treating these resistant cases, and targeted sequencing of the EGFR locus has become a common practice in treatment of non-small cell lung cancer. Overproduction of ligands is another possible mechanism of activation of EGFR. ERBB ligands include EGF, TGF-a, AREG, EPG, BTC, HB-EGF, EPR and NRG1-4 (for detailed information please refer to the respective ligand section). The protein encoded by this gene is a transmembrane glycoprotein that is a member of the protein kinase superfamily. This protein is a receptor for members of the epidermal growth factor family. EGFR is a cell surface protein that binds to epidermal growth factor, thus inducing receptor dimerization and tyrosine autophosphorylation leading to cell proliferation. Mutations in this gene are associated with lung cancer. EGFR is a component of the cytokine storm which contributes to a severe form of Coronavirus Disease 2019 (COVID-19) resulting from infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). [provided by RefSeq, Jul 2020]
- ARID1A. This gene encodes a member of the SWI/SNF family, whose members have helicase and ATPase activities and are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The encoded protein is part of the large ATP-dependent chromatin remodeling complex SNF/SWI, which is required for transcriptional activation of genes normally repressed by chromatin. It possesses at least two conserved domains that could be important for its function. First, it has a DNA-binding domain that can specifically bind an AT-rich DNA sequence known to be recognized by a SNF/SWI complex at the beta-globin locus. Second, the C-terminus of the protein can stimulate glucocorticoid receptor-dependent transcriptional activation. It is thought that the protein encoded by this gene confers specificity to the SNF/SWI complex and may recruit the complex to its targets through either protein-DNA or protein-protein interactions. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
- EP300. This gene encodes the adenovirus E1A-associated cellular p300 transcriptional co-activator protein. It functions as histone acetyltransferase that regulates transcription via chromatin remodeling and is important in the processes of cell proliferation and differentiation. It mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. This gene has also been identified as a co-activator of HIF1A (hypoxia-inducible factor 1 alpha), and thus plays a role in the stimulation of hypoxia-induced genes such as VEGF. Defects in this gene are a cause of Rubinstein-Taybi syndrome and may also play a role in epithelial cancer. [provided by RefSeq, Jul 2008]
- TP53. This gene encodes a tumor suppressor protein containing transcriptional activation, DNA binding, and oligomerization domains. The encoded protein responds to diverse cellular stresses to regulate expression of target genes, thereby inducing cell cycle arrest, apoptosis, senescence, DNA repair, or changes in metabolism. Mutations in this gene are associated with a variety of human cancers, including hereditary cancers such as Li-Fraumeni syndrome. Alternative splicing of this gene and the use of alternate promoters result in multiple transcript variants and isoforms. Additional isoforms have also been shown to result from the use of alternate translation initiation codons from identical transcript variants (PMIDs: 12032546, 20937277). [provided by RefSeq, Dec 2016]

Drug Information

APR-246

APR-246 is a first-in-class agent targeting mutant p53. In vitro and in vivo preclinical models have demonstrated that APR-246 has excellent efficacy in OC (both adenocarcinoma and squamous cell carcinoma) and potently synergises with chemotherapies used in the treatment of OC, restoring sensitivity to chemotherapy-resistant tumours. An initial phase I clinical trial has shown APR-246 to be safe in humans and early results from a currently running phase Ib/II trial of APR-246 with carboplatin and liposomal doxorubicin in ovarian cancer have been promising. Together, these data provide a strong rationale for investigating the efficacy of APR-246 in OC.

APR-246 has been used in trials studying the treatment of Prostatic Neoplasms, Hematologic Neoplasms, and Platinum Sensitive Recurrent Highgrade Serous Ovarian Cancer With Mutated p53.

APR-246 is an analogue of PRIMA-1, which modifies the core domain of mutant p53, resulting in restoration of wild-type p53 conformation and reactivation of normal p53 function, leading to increased cell cycle arrest and tumor cell death (PMID: 20498645).

Birabresib

Birabresib (OTX015 or MK-8628) is a potent BET bromodomian inhibitor, which targets the BET bromodomain proteins 2, 3, and 4 (BRD2/3/4). BRDs 2, 3, and 4 are considered potential cancer targets because of their pivotal role in regulating the transcription of growth-promoting genes and cell cycle regulators. OTX015 is the first BRD2/3/4 inhibitor to enter clinical trials. Upon administration, birabresib binds to the acetylated lysine recognition motifs on the bromodomain of BET proteins, thereby preventing the interaction between the BET proteins and acetylated histone peptides. This disrupts chromatin remodeling and gene expression.

Talazoparib

Talazoparib is a poly(ADP-ribose) Polymerase 1, 2 (PARP 1;2 inhibitor).

Talazoparib was approved by the FDA for use in germline BRCA mutated, HER2 negative, locally advanced or metastatic breast cancer on October 16, 2018 under the trade name Talzenna. Talazoparib prevents PARP-mediated repair of DNA damage in cancer cells, allowing accumulation of damage and PARP-DNA complexes. Repair related errors by error prone secondary repair pathways may also contribute to the cytotoxicity of Talazoparib. Talazoparib is indicated for the treatment of deleterious or suspected deleterious germline BRCA mutated, HER2 negative locally advanced or metastatic breast cancer in adults.

Niraparib

Niraparib (ZEJULA) is an inhibitor of poly (ADP-ribose) polymerase (PARP) with potential antineoplastic activity. PARP Inhibitor MK4827 inhibits PARP activity, enhancing the accumulation of DNA strand breaks and promoting genomic instability and apoptosis. The PARP family of proteins detect and repair single strand DNA breaks by the base-excision repair (BER) pathway. The specific PARP family member target for PARP inhibitor MK4827 is unknown. (NCI Thesaurus)

ZEJULA is a poly(ADP-ribose) polymerase (PARP) inhibitor indicated for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy.

Olaparib

Olaparib (Lynparza) is an antineoplastic agent, Poly(ADP-ribose) Polymerase 1;2;3 inhibitor. (PARP 1;2;3 inhibitor).

Lynparza is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated for the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated advanced ovarian cancer who have been treated with three or more prior lines of chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for Lynparza.

Rucaparib

Rucaparib is a potent mammalian poly(ADP-ribose) polymerase 1, 2 and 3 inhibitor with anticancer properties (PARP 1;2;3 inhibitor).

PPAR is an enzyme that plays an essential role in DNA repair by activating response pathways and facilitating repair, and defects in these repair mechanisms have been demonstrated in various malignancies, including cancer. Regulation of repair pathways is critical in promoting necessary cell death. BRCA genes are tumor suppressor genes mediate several cellular processes including DNA replication, transcription regulation, cell cycle checkpoints, apoptosis, chromatin structuring and homologous recombination (HR). Homologous recombination deficiency (HRD), along with PPAR inhibition, is a vulnerability that enhances the cell death pathway when the single mutations alone would permit viability. Ovarian cancer commonly possesses defects in DNA repair pathways such as HRD due to BRCA mutations or otherwise. Rucaparib has shown to induce cytotoxicity in tumor cell lines with deficiencies in BRCA1/2 and other DNA repair genes. Of all the BRCA1/2 mutations in ovarian cancer, most are due to germline mutations (18%), and approximately 7% represent somatic mutations acquired within the tumor.

Rucaparib is an inhibitor of PARP-1, PARP-2, and PARP-3. Via an inhibitory effect on the PARP enzymatic activity, rucaparib decreases the formation of PARP-DNA complexes resulting in DNA damage, apoptosis, and cell death. It is proposed that PARP inhibition specifically targets tumor cells with preexisting HRD, such as those cells possessing mutations in the BRCA1 or BRCA2 genes.

Afatinib

Afatinib (GILOTRIF) is a potent and selective, irreversible ErbB family blocker. Afatinib covalently binds to and irreversibly blocks signaling from all homo and heterodimers formed by the ErbB family members EGFR (ErbB1), HER2 (ErbB2), ErbB3 and ErbB4.

Afatinib is a kinase inhibitor indicated as monotherapy 3 for the first-line Label treatment of:

-Epidermal Growth Factor Receptor (EGFR) TKI (tyrosine kinase inhibitor)-naive adult patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) whose tumors have non-resistant EGFR mutations.

-Adult patients with locally advanced or metastatic NSCLC of squamous histology progressing on or after platinum-based chemotherapy.

Erlotinib

Erlotinib hydrochloride (trade name Tarceva) is a drug used to treat non-small cell lung cancer, pancreatic cancer and several other types of cancer. It is a receptor tyrosine kinase inhibitor, which acts on the epidermal growth factor receptor (EGFR).

Gefitinib

Gefitinib inhibits the epidermal growth factor receptor (EGFR) tyrosine kinase by binding to the adenosine triphosphate (ATP)-binding site of the enzyme. Thus, the function of the EGFR tyrosine kinase in activating the Ras signal transduction cascade is inhibited; and malignant cells are inhibited. Gefitinib is the first selective inhibitor of the EGFR tyrosine kinase which is also referred to as Her1 or ErbB-1. Acting in a similar manner to Erlotinib (marketed as Tarceva), Gefitinib selectively targets the mutant proteins in malignant cells.

Potential Clinical Trials

Trial URL	Status	Title	Disease	Drug	Sites
https://classic.clinical trials.gov/show/NCT0 6074588	Recruiting	MK-2870 Versus Chemotherapy in Previously Treated Advanced or Metastatic Nonsquamous Non- small Cell Lung Cancer (NSCLC) With EGFR Mutations or Other Genomic Alterations (MK-2870- 004)	Non-small Cell Lung Cancer	MK-2870 Docetaxel Pemetrexed	Mid Florida Hematology and Oncology Center (Site 0005), Orange City, Florida, United States Northwest Georgia Oncology Centers, a Service of Wellstar Cobb Hospital- Research (Site 0003), Marietta, Georgia, United States Hattiesburg Clinic Hematology/Oncology (Site 0010), Hattiesburg, Mississippi, United States
https://classic.clinical trials.gov/show/NCT0 4676477	Recruiting	HER3-DXd (Patritumab Deruxtecan; U3-1402) in Combination With Osimertinib in Subjects With Locally Advanced or Metastatic EGFR- mutated Non-Small Cell Lung Cancer	Non-small Cell Lung Cancer	HER3-DXd HER3-DXd Osimertinib Osimertinib HER3-DXd HER3-DXd Osimertinib	UCLA, Santa Monica, California, United States Yale University School of Medicine - Yale- New Haven Hospital, New Haven, Connecticut, United States Georgetown University Medical Center, Washington, District of Columbia, United States
https://classic.clinical trials.gov/show/NCT0 5519293	Recruiting	Phase I/IIa Study of H002 in NSCLC With Active EGFR Mutation	Non-small Cell Lung Cancer	H002	Valkyrie Clinical Trials, Los Angeles, California, United States Dana-Farber Cancer Institute, Boston, Massachusetts, United States Columbia University, New York, New York, United States

https://classic.clinical trials.gov/show/NCT0 4743505	Recruiting	Safety and Efficacy of Combining APL-101 With Frontline Osimertinib in Patients With EGFR- mutated Metastatic Non-small Cell Lung Cancer (NSCLC)	Non-small Cell Lung Cancer	APL-101 Osimertinib	Washington University School of Medicine, Saint Louis, Missouri, United States
https://classic.clinical trials.gov/show/NCT0 5765734	Recruiting	A Study of TAS3351 in NSCLC Patients With EGFRmt	Non-Small Cell Lung Cancer	TAS3351 oral administration	Georgetown University - Lombardi Comprehensive Cancer Center, Washington, District of Columbia, United States Tennessee Oncology, Nashville, Tennessee, United States University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States

Detailed Results

Single N	Single Nucleotide Variant (SNV) and Insertions-Deletions (INDELS)												
Gene name	Hgvsp	Hgvsc	Aminoacids	Codons	Consequence	Allele frequency	Read depth	Predicted effect on protein					
IKBKE	NP_054721.1:p. Gly139Ala	NM_014002.3:c. 416G>C	G/A	gGg/gCg	missense_variant	19.34	1334	deleterious (0)					
EGFR	NP_005219.2:p.L eu747_Pro753de linsSer	NM_005228.3:c. 2240_2257delTA AGAGAAGCAAC ATCTC	LREATSP/S	tTAAGAGAA GCAACATCT Ccg/tcg	inframe_deletion	8.5	682	0					
ARID1A	NP_006006.3:p. Tyr560Ter	NM_006015.4:c. 1680C>G	Y/*	taC/taG	stop_gained	7.46	1180	0					
EP300	NP_001420.2:p. Pro1574Ser	NM_001429.3:c. 4720C>T	P/S	Ccc/Tcc	missense_variant	7.13	1346	0					
TP53	0	NM_000546.5:c. 672+2T>G	0	0	splice_donor_variant	6.45	217	0					

Methodology and Test Background

This is a next generation sequencing (NGS) test that analyzes DNA for abnormalities in 434 genes and RNA of >1600 genes that are reported to be altered in various types of solid tumors. The assay also detects several viruses that are important in oncology, including EBV, HPV and TTV. TTV (torque teno virus) was first discovered in a patient with non-A-E hepatitis and is now regarded as a part of the human virome. In general, TTV does not cause pathology in immunocompetent individuals. TTV is considered as a marker of immune competence in patients with immunological impairment and inflammatory disorders. High TTV load is associated with increased risk of infection. In patients with organ transplant, low TTV load is associated with an increased risk of rejection.

Nucleic acid is isolated from paraffin-embedded tissue. For optimal results neoplastic cells should be greater than 30% of the analyzed cells. H&E-sections are reviewed by a pathologist and tumor-enrichment is performed by macrodissection when possible. Testing is performed using massive parallel sequencing of the coding DNA of the listed genes. This includes sequencing of all the exons as well as approximately 50 nucleotides at the 5' and 3' ends of each coding exon to detect splice site abnormalities. The TERT promoter region, including the hotspots at -124 and -146 bp, is also covered. Our DNA sequencing method has a sensitivity of 3% for detecting hotspot mutations and 5%

for detecting single nucleotide variants (SNVs) and small (<60 bp) insertions/ deletions (indels). MSI status is inferred by interrogating all available genomic microsatellites covered. Tumor mutational burden (TMB) is measured by counting all nonsynonymous variants and filter settings as follows: (A) Pass all filters; (B) inside genes; (C) had a mutant allele frequency >5%; (D) not found in the dbSNP (to exclude germline variations). The median for TMB is 10 mutations/Mb based on lung carcinoma analysis. The cut off for other types of tumors is not well-established at this time. Significant gene amplification and deletion (copy number variants) are also reported. Targeted RNA NGS is performed by hybrid capture and duplicates are excluded for levels measurements. The Universal Human Reference (UHR) RNA is used as control. All detected fusion transcripts are reported. While the major focus of the RNA analysis is the detection of fusion mRNA, mutations in the expressed RNA of the analyzed genes, HLA class I genotyping, and Epstein-Barr virus (EBV), human papillomavirus (HPV) and torque teno virus (TTV) viral RNA are also analyzed and reported. B- and T-cell clonality will be reported, if clonal or clinically relevant. The sensitivity of this assay in detecting fusion mRNA is between 5% and 10%. This test specifically covers translocations that lead to the expression of fusion RNA. Translocations that lead to deregulation of expression can be addressed by this test if compared to the expression proper normal control. Since the clinical relevance of the RNA expression level of most of the genes is not characterized at this time, only a few specific genes will be commented on when abnormalities are detected. CD274 (PD-L1) mRNA levels are reported when they are significantly elevated. This assay is not designed to detect minimal residual disease and should be used for diagnosis. Performance of the assay may vary dependent on the quantity and quality of nucleic acid, sample preparation and sample age. Decalcified specimens have not been validated. Decalcification with strong acids is not recommended and may lead to poor nucleic acid quality and suboptimal results.

This test specifically covers translocations that lead to the expression of fusion RNA. Translocations that lead to deregulation of expression can be addressed by this test if compared to the expression proper normal control. Since the clinical relevance of the RNA expression level of most of the genes is not characterized at this time, only a few specific genes will be commented on when abnormalities are detected. CD274 (PD-L1) mRNA levels are reported when they are significantly elevated.

Based on our validation study, the following exonic regions of the genes listed below are not covered appropriately <100X coverage and sequencing by NGS may not be reliable in these regions. This poor coverage is mainly due to high GC content and inherent problem in obtaining adequate coverage. ASXL1 NM_001164603 20:30946620- 30946635, ATM NM_000051 11:108186550-108186638, BAP1 NM_004656 3:52443858-52443894, BCR NM_004327 22:23652510 -23652620, BRD4 NM_058243 19:15353808-15354193,5355041-15355411, CCNE1 NM_001238 19:30303463-30303485, CD274 NM_001267706 9:5456109-5456165, CD79A NM_001783 19:42384736-42384805, CSF3R NM_000760 1:36937667-36937740, DDX11 NM_001257144 12:31240872-31240917, ERBB3 NM_001982 12:56492284 -56492359, FANCI NM_001113378 15:89835919-89836052, FLT3 NM_004119 13:28674605-28674652, FLT4 NM_002020 5:180035281-180035284, GEN1 NM_001130009 2:17954486-17954525, H3-3A NM_002107 1:226259140-226259180, IRS2 NM_003749 13:110437126-110437363, 110437805-110437899, 110438359- 110438400, JAK1 NM_002227 1:65309747-65309771, MAGI2 NM_012301 7:77648719-77649044, MITF NM_000248 3:70005606-70005681, MYCL NM_001033081 1:40367518-40367565, NF1 NM_000267 17:29664837-29664898, NOTCH2 NM_001200001 1:120572528-120572610, PBRM1 NM_018313 3:52677264-52677322, PIK3R2 NM_005027 19:18272089-18272305, PMS2 NM_000535 7:6013024-6013173, RANBP2 NM_006267 2:109363166-109363254, 109367779-109367838, 109367984-109368069, 109369453-109369497, 109378578-109378651, .RHEB NM_005614 7:151216546-151216597, SUFU NM_001178133 10:104263911-104264039, TNFRSF14 NM_003820 1:2494304-2494335.

The table below contains a partial list of the tested DNA genes. For a complete list, please go to: https://genomictestingcooperative.com/genomic-tests/solid-tumor-profile-plus/(click the DNA tab)

The table below contains a partial list of the tested RNA genes (Fusions/Expression). For a complete list, please go to: https://genomictestingcooperative.com/genomic-tests/solid-tumor-profile-plus/ (click the RNA tab)

Tested genes

Genes	s Teste	d for A	bnorn	nalities	s in Co	ding S	equenc	e								
ABCB7	AURKB	C150RF41	CEBPA	DNMT3A	FANCC	FLT3	GRIN2A	IRF2	LM01	MSH6	NTRK2	POT1	RARA	SF3B1	STAT6	TSHR
ABL1	AURKC	CALR	CHD2	DOT1L	FANCD2	FLT4	GRM3	IRF4	LPIN2	MTOR	NTRK3	PPM1D	RB1	SLIT2	STK11	U2AF1
ABL2	AXIN1	CARD11	CHD4	EED	FANCE	F0XL2	GSK3B	IRS2	LRP1B	MUTYH	NUP93	PPP2R1A	RBBP6	SLX4	SUFU	U2AF2
ACD	AXIN2	CBFB	CHEK1	EGFR	FANCF	F0XP1	GSKIP	JAGN1	LYN	MVK	PAK3	PRDM1	RBM10	SMAD2	SUZ12	VEGFA
ACVR1B	AXL	CBL	CHEK2	EGLN1	FANCG	FRS2	H3F3A	JAK1	LYST	MYC	PALB2	PREX2	RBM8A	SMAD3	SYK	VHL
ADA	B2M	CBLB	CIC	ELANE	FANCI	FUBP1	HAX1	JAK2	LZTR1	MYCL	PARK2	PRKAR1A	RET	SMAD4	TAF1	WAS
AK2	BAP1	CBLC	CREBBP	EP300	FANCL	G6PC3	HGF	JAK3	MAGI2	MYCN	PAX5	PRKCI	RHEB	SMAD9	TAL1	WHSC1
AKT1	BARD1	CCND1	CRKL	EPAS1	FANCM	GABRA6	HIST1H3B	JUN	MAP2K1	MYD88	PBRM1	PRKDC	RHOA	SMAD9L	TBX3	WISP3
AKT2	BCL2	CCND2	CRLF2	EPCAM	FAS	GALNT12	HNF1A	KAT6A	MAP2K2	NBN	PDCD1LG2	PRSS1	RICTOR	SMARCA4	TCF3	WT1
AKT3	BCL2L1	CCND3	CSF1R	EPHA3	FAT1	GATA1	HOXA11	KDM5A	MAP2K4	NF1	PDGFRA	PRSS8	RIT1	SMARCB1	TCIRG1	XP01
ALK	BCL2L2	CCNE1	CSF3R	EPHA5	FBXW7	GATA2	HOXB13	KDM5C	MAP3K1	NF2	PDGFRB	PSTPIP1	RNF168	SMC1A	TERC	XRCC2
AMER1	BCL6	CD274	CTC1	EPHA7	FGF10	GATA3	HRAS	KDM6A	MAP3K14	NFE2L2	PDK1	PTCH1	RNF43	SMC3	TERF1	XRCC3
ANKRD26	BCOR	CD79A	CTCF	EPHB1	FGF14	GATA4	HSD3B1	KDR	MAPK1	NFKBIA	PHF6	PTEN	ROS1	SM0	TERF2	ZBTB2
APC	BCORL1	CD79B	CTNNA1	ERBB2	FGF19	GATA6	HSP90AA1	KEAP1	MCL1	NHP2	PIK3C2B	PTPN11	RPTOR	SNCAIP	TERF2IP	ZNF217
AR	BCR	CDAN1	CTNNB1	ERBB3	FGF23	GEN1	ID3	KEL	MDM2	NKX2-1	PIK3CA	QKI	RTEL1	SOCS1	TERT	ZNF703
ARAF	BIRC3	CDC73	CUL3	ERBB4	FGF3	GFI1	IDH1	KIF23	MDM4	NLRP3	PIK3CB	RAB27A	RUNX1	SOX10	TET2	ZRSR2
ARFRP1	BLM	CDH1	CUX1	ERCC4	FGF4	GFI1B	IDH2	КІТ	MED12	NME1	PIK3CG	RAC1	RUNX1T1	SOX2	TGFBR2	-
ARID1A	BMPR1A	CDK12	CXCR4	ERG	FGF6	GID4	IGF1R	KLF1	MEF2B	NOP10	PIK3R1	RAD21	SBDS	SOX9	TNFAIP3	-
ARID1B	BRAF	CDK4	CYLD	ERRFI1	FGFR1	GLI1	IGF2	KLHL6	MEFV	NOTCH1	PIK3R2	RAD50	SBF2	SPEN	TNFRSF14	-
ARID2	BRCA1	CDK6	DAXX	ESR1	FGFR2	GLI2	IKBKE	KLLN	MEN1	NOTCH2	PIM1	RAD51	SDHA	SPOP	TNFRSF1A	-
ASXL1	BRCA2	CDK8	DDR2	ETV6	FGFR3	GNA11	IKZF1	KMT2A	MET	NOTCH3	PLCG1	RAD51B	SDHB	SPTA1	TOP1	-
ATG2B	BRD4	CDKN1A	DDX11	EX01	FGFR4	GNA13	IKZF3	KMT2B	MITF	NPM1	PLCG2	RAD51C	SDHC	SRC	TOP2A	-
ATM	BRIP1	CDKN1B	DDX41	EZH2	FH	GNAQ	IL2RG	KMT2C	MLH1	NRAS	PMS1	RAD51D	SDHD	SRSF2	TP53	-
ATR	BTG1	CDKN2A	DICER1	FAM175A	FLCN	GNAS	IL7R	KMT2D	MPL	NROB1	PMS2	RAD54L	SEC23B	STAG2	TRAF3	-
ATRX	BTK	CDKN2B	DKC1	FAM46C	FLI1	GPR124	INHBA	KRAS	MRE11A	NSD1	POLD1	RAF1	SETBP1	STAT3	TSC1	-
AURKA	C11orf40	CDKN2C	DNM2	FANCA	FLT1	GREM1	INPP4B	LIG4	MSH2	NTRK1	POLE	RANBP2	SETD2	STAT4	TSC2	-

RNA Fusions/Expression

Fusion/Expression													
ABL1	BCL2	CBFB	ERG	FGFR2	F0X01	IKZF3	MAP3K1	NTRK1	NUP98	PICALM	RHOA	SS18	TCF3
AKT3	BCL6	CIC	ETV6	FGFR3	FUS	JAK2	MECOM	NTRK2	PDGFRA	PML	ROS2	STAT6	TFG
ALK	BRAF	CREBBP	EWSR1	FIP1L1	GLI1	KIAA1549	MYC	NTRK3	PDGFRB	RARA	RUNX1	TAFG	YWHAE
BCL1	CAMTA1	EGFR	FGFR1	FLAG1	HMGA2	KMT2A	NOTCH1	NUP214	PD-L1	RET	RUNX1T1	TAL1	

Reference

- 1. Toward personalized treatment approaches for non-small-cell lung cancer. Wang M, Herbst RS, Boshoff C. Wang M, et al. Nat Med. 2021 Aug;27(8):1345-1356. doi: 10.1038/s41591-021-01450-2. Epub 2021 Aug 12. Nat Med. 2021. PMID: 34385702
- 2. EGFR mutations and lung cancer. da Cunha Santos G, Shepherd FA, Tsao MS. da Cunha Santos G, et al. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. Annu Rev Pathol. 2011. PMID: 20887192
- 3. Non-small cell lung cancer (NSCLC): A review of risk factors, diagnosis, and treatment. Alduais Y, Zhang H, Fan F, Chen J, Chen B. Alduais Y, et al. Medicine (Baltimore). 2023 Feb 22;102(8):e32899. doi: 10.1097/MD.00000000032899. Medicine (Baltimore). 2023. PMID: 36827002
- 4. Advances in systemic therapy for non-small cell lung cancer. Miller M, Hanna N. Miller M, et al. BMJ. 2021 Nov 9;375:n2363. doi: 10.1136/bmj.n2363. BMJ. 2021. PMID: 34753715

Electronic Signature

The test (sample processing, sequencing and data generation) was performed at Genomic Testing Cooperative, LCA, Genomic Testing Cooperative, LCA, 175 Technology Drive, Suite 100, Irvine, CA 92618. Medical Director Maher Albitar, M.D. Analysis of the data was performed by Genomic Testing Cooperative, LCA, 175 Technology Drive, Suite 100, Irvine, CA 92618. Medical Director: Maher Albitar, M.D.

The test was developed and its performance characteristics have been determined by Genomic Testing Cooperative, LCA This test has not been approved by the FDA. The FDA has determined such clearance or approval is not necessary. This laboratory is CLIA certified to perform high complexity clinical testing.