
, machine learning is needed when the fraction of the neoplastic cells was low.  Using machine learning (random forest), diagnosis of most hematologic neoplasms was achieved with high sensitivity and specificity in the testing set.  Area under the curve (AUC) was at 0.972 (95% CI : 0.950-0.994) for AML vs normal,  0.936 (95% CI : 0.898-0.974) for normal vs MM, 0.965 
(95% CI : 0.909-1.00) for mantle vs CLL, 0.962 (95% CI : 0.907-1.00) for CLL vs ALL, 0.935 (95% CI : 0.866-1.00) for CLL vs normal, and 0.964 (95% CI : 0.927-1.00) for AML vs ALL.  Diseases that are difficult to diagnose by routine flow cytometry were diagnosed by RNA expression and machine learning at acceptable accuracy. For example, AUC was at 0.761 (95% CI : 0.689-

0.834) for MDS vs normal, 0.831 (95% CI : 0.762-0.901) for MDS vs AML, 0.888 (95% CI : 0.822-0.954) for MDS vs MPN, and 0.785 (95% CI : 0.698-0.872) for MPN vs normal.

Flow cytometry performs multi-parameter analysis of cells and analyzes 
surface and intracellular markers for accurate phenotypic characterization of 
a cell population. Flow cytometry is used extensively in the diagnosis and 
classification of various hematologic neoplasms.  However, analysis of the 
generated data is time consuming and remains subjective requiring special 
skill and experience.  Furthermore, some diagnostic classes, such as 
myeloproliferative neoplasms (MPN) and myelodysplastic syndrome (MDS), 
are difficult to diagnose using flow cytometry.  The RNA levels of the CD 
markers used in flow cytometry can be reliably quantified using next 
generation sequencing (NGS).  However, when all cells are jointly sequenced, 
studying subpopulation of cells is lost, which hinders accurate diagnosis. 
Machine learning algorithms are capable of multimarker normalizing and 
compensate for the loss of subclonal analysis..

To explore and validate the potential of using RNA 
expression profiling with machine learning in 
providing information similar to these provided by 
flow cytometry.  We used the expression of 30 CD 
markers as determined by RNA sequencing of bone 
marrow or peripheral blood samples in random forest 
platform and compared findings with actual flow 
cytometry based diagnostic findings.  

RNA was extracted from fresh bone marrow and peripheral 
blood samples from 172 acute myeloid leukemia (AML), 369 
normal control, 68 MPN, 218 MDS, 93 acute lymphoblastic 
leukemia (ALL), 74 chronic lymphocytic leukemia (CLL), 38 
mantle cell lymphoma, and 83 multiple myeloma.  The 
samples were consecutive and collected without selection.  
RNA sequencing was performed using a targeted hybrid 
capture panel that included CD1A, CD2, CD3D, CD3E, CD3G, 
CD4, CD5, CD7, CD8A, CD8B, CD10, CD14, CD19, CD20, CD22, 
CD33, CD34, CD38, CD40, CD44, CD47, CD68, CD70, CD74, 
CD79A, CD79B, CD81, CD138, CD200, CD274 genes.  Salmon 
v1.4.0 software is used for expression quantification (TPM).  
Machine learning algorithm (Random forest) is used for 
classifying diseases.  Two thirds of samples were used for 
training the random forest algorithm and one third was used 
for testing.  

1. In diagnostic samples, NGS quantification of RNA from 30 CD markers can reliably 

be used to evaluate hematologic neoplasms and be used as a replacement to flow 

cytometry  a fashion similar to flow cytometry.

2. In cases with low level neoplastic cells, NGS data of RNA of 30 CD markers when 

combined with machine learning is adequate for reliable diagnosis of various types 

of hematologic neoplasms.  

3. Using NGS data of RNA from 30 CD markers when combined with machine learning 

can provide differential diagnosis in cases flow cytometry typically not useful such 

as differentiating between MDS and normal or myeloproliferative neoplasms.  

4. This technology can be automated and less susceptible to human errors and does 

not require high level of specialization.   
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RESULTS

In samples with partial involvement machine learning is needed when for precise and high sensitivity prediction of 
diagnosis. Using random forest two third were used for training and one third is used for testing.   

Normal B-ALL T-cell DLBCL T-ALL
Mantle 

CD5-neg
CLL

AML-Mixed 
lineage

ANPEP (CD13) 1871 598 58 141 63 51 207 557
BCL2 227 1265 121 296 958 1557 6786 1064

CCND1 3 5 19 70 33 2391 12 14
CD14 715 40 129 384 410 167 11 1603
CD19 1 435 29 1004 42 1022 935 136
CD1A 1 0 1 15 1 46 0 5
CD2 30 98 1045 277 353 87 31 118

CD200 2 142 15 60 458 37 499 218
CD22 8 180 29 1149 92 2236 635 43
CD33 403 39 18 132 65 65 51 852
CD34 9 736 25 58 2159 28 4 1199
CD38 204 109 40 109 749 82 61 91
CD3D 107 400 1154 159 1456 59 50 263
CD3E 105 194 637 104 268 50 65 165
CD3G 33 83 358 70 736 14 14 71
CD4 236 37 89 323 184 43 27 237
CD5 39 184 1103 61 145 70 197 44
CD7 50 135 12 81 2232 42 29 92

CD79A 13 958 172 3132 299 4762 2704 161
CD79B 71 797 191 2238 221 955 268 370
CD8A 11 127 13 96 21 37 15 25
CD8B 16 80 8 84 9 86 12 30
CRLF2 5 24 1 18 23 12 3 10

DNTT(tdt) 1 4665 1 16 16 49 10 402
FCER2(CD23) 4 45 22 39 6 677 2255 108

FCGR1A(CD64) 202 28 14 28 6 49 6 418
FCGR3A(CD16) 672 118 14 30 10 33 23 500

KIT (CD117) 12 2 3 31 9 24 4 458
MKI67 1568 530 358 1270 1496 136 87 73

MME(CD10) 181 1834 12 302 16 4 49 43
MPO 8678 608 1 37 3 51 872 4613

MS4A1(CD20) 1 176 89 1620 178 4451 691 52
MYC 253 202 124 497 373 1406 78 1909

NCAM1(CD56) 14 6 2 17 1 20 2 18
SDC1(CD138) 5 16 33 52 24 57 1 1

TNFRSF17(BCMA) 2 3 25 72 28 122 21 1
TNFRSF8(CD30) 2 2 102 32 9 23 1 19

ZAP70 64 493 461 122 106 114 429 180
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