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RESULTS

Example of a diagnostic samples with various types of hematologic
neoplasms showing RNA expression levels that are diagnostic

INTRODUCTION

Flow cytometry performs multi-parameter analysis of cells and analyzes
surface and intracellular markers for accurate phenotypic characterization of
a cell population. Flow cytometry is used extensively in the diagnosis and
classification of various hematologic neoplasms. However, analysis of the
generated data is time consuming and remains subjective requiring special
skill and experience. Furthermore, some diagnostic classes, such as

In samples with partial involvement machine learning is needed when for precise and high sensitivity prediction of
diagnosis. Using random forest two third were used for training and one third is used for testing.
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myeloproliferative neoplasms (MPN) and myelodysplastic syndrome (MDS),
are difficult to diagnose using flow cytometry. The RNA levels of the CD
markers used in flow cytometry can be reliably quantified using next
generation sequencing (NGS). However, when all cells are jointly sequenced,
studying subpopulation of cells is lost, which hinders accurate diagnosis.
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providing information similar to these provided by
flow cytometry. We used the expression of 30 CD
markers as determined by RNA sequencing of bone
marrow or peripheral blood samples in random forest
platform and compared findings with actual flow

cytometry based diagnostic findings.
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. In diagnostic samples, NGS quantification of RNA from 30 CD markers can reliably 1
be used to evaluate hematologic neoplasms and be used as a replacement to flow
cytometry a fashion similar to flow cytometry.
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Receiver operating characteristic (ROC) curve of the testing set for classifying MPN Vs MDS/AML. TPF, true positive fraction (sensitivity); FPF,

METHOD

RNA was extracted from fresh bone marrow and peripheral
blood samples from 172 acute myeloid leukemia (AML), 369
normal control, 68 MPN, 218 MDS, 93 acute lymphoblastic
leukemia (ALL), 74 chronic lymphocytic leukemia (CLL), 38
mantle cell lymphoma, and 83 multiple myeloma. The
samples were consecutive and collected without selection.
RNA sequencing was performed using a targeted hybrid
capture panel that included CD1A, CD2, CD3D, CD3E, CD3G,

D4, CD5, CD7, CD8A, CD8B, CD10, CD14, CD19, CD20, CD22,

D33, CD34, CD38, CD40, CD44, CD47, CD68, CD70, CD74,

D79A, CD79B, CD81, CD138, CD200, CD274 genes. Salmon

v1.4.0 software is used for expression quantification (TPM).

Machine learning algorithm (Random forest) is used for

classifying diseases. Two thirds of samples were used for

training the random forest algorithm and one third was used
for testing.
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. In cases with low level neoplastic cells, NGS data of RNA of 30 CD markers when
combined with machine learning is adequate for reliable diagnosis of various types
of hematologic neoplasmes. 2

. Using NGS data of RNA from 30 CD markers when combined with machine learning
can provide differential diagnosis in cases flow cytometry typically not useful such
as differentiating between MDS and normal or myeloproliferative neoplasmes.
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. This technology can be automated and less susceptible to human errors and does
not require high level of specialization.
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