

Solid Tumor Profile Plus

Patient Name:		Ordering Physician:		
Date of Birth:		Physician ID:		
Gender (M/F):		Accession #:		
Client:		Specimen Type:		
Case #:		Specimen ID:		
Body Site:				
MRN:				
Collected Date:				
Received Date:				
Reported Date:				

Detected Genomic Alterations											
Level 1 (FDA- Approved)	Level 2 (Standard of Care)	Level 3 (Clinical Evidence)	Level 4 (Biological Evidence)	Other							
VHL	-Homologous recombination deficiency (HRD): Positive-High -Tumor Mutation Burden Low: 4 Mut/Mb -No evidence of microsatellite instability	TET2	КМТ2В	Chromosomal structural analysis shows 3p-, 4q-, 8q+ (MYC gain), -9, +12 13q-, 14q- and 19q-							

Results Summary

- -Mutations in VHL, KMT2B, and TET2 genes
 - -Homologous recombination deficiency (HRD): Positive-High
 - -Increased PD-L1, EGFR, and VEGFA mRNA
 - -Chromosomal structural analysis shows 3p-, 4q-, 8q+ (MYC gain), -9, +12, 13q-, 14q- and 19q-
 - -No evidence of microsatellite instability
 - -Tumor Mutation Burden Low: 4 Mut/Mb
 - -No evidence of fusion mRNA involving ALK, RET, ROS1, or NTRK
 - -EBV viral RNA: Not detected -HPV viral RNA: Not detected -TTV viral RNA: Not detected
 - -HLA Genotyping:

-HLA-A: A*24:02-A*02:06 -HLA-B: B*40:06-B*40:06 -HLA-C: C*08:01-C*08:01

⁻The findings are consistent with renal cell carcinoma.

- -Positive homologous recombination deficiency (HRD) suggests response to platinum-based chemotherapy and PARP inhibitors.
- -VHL mutation suggests response to hypoxia-inducible factor 2a (HIF-2a) inhibitor (belzutifan) and anti-VEGFA antibodies.

Tumor Heterogeneity

There is an abnormal clone with VHL, KMT2B, and TET2 mutations.

Expression

Increased PD-L1, EGFR, and VEGFA mRNA

Diagnostic Implications

VHL, KMT2B, TET2 These findings are consistent with renal cell carcinoma

FDA-Approved Therapeutics

VHL Belzutifan

FDA-Approved Therapeutics in Other Tumor Types

HRD Positive Niraparib + platinum-based chemotherapy

Levels 2, 3 & 4 (Standard of Care and Clinical/Biological Evidence)

=0.00 =, 0 = 1 (0.00 = 0.00 =								
VHL	Hypoxia-inducible factor 2a (HIF-2a) inhibitor and anti-VEGFA antibodies							
TET2	DNA methyltransferase inhibitors							

Relevant Genes with NO Alteration

-No evidence of mutation in KRAS, NRAS, EGFR, BRAF,	No evidence of fusion mRNA involving ALK, RET, ROS1, or	-No evidence of MET14 deletion or EGFR Viii
TP53, or BRCA 1/2	NTRK	-No evidence of ERBB2 (HER2)
-No specific mutation in DPYD gene, associated with enzymatic		amplification
deficiency		

Test Description:

This is a comprehensive molecular profile which uses next generation sequencing (NGS) to identify molecular abnormalities, including single nucleotide variants (SNVs), insertions/deletions (indels), copy number variants (CNVs), fusions, tumor mutational burden (TMB), microsatellite instability (MSI), homologous recombination deficiency (HRD), B- and T-cell clonality, and viruses (HPV, EBV, and TTV), in DNA of 434 genes and RNA in greater than 1600 genes implicated in solid tumors. Whenever possible, clinical relevance and implications of detected abnormalities are described below.

Tel: 1-866-484-8870 www.genomictestingcooperative.com CLIA #: 05D2111917 CAP #: 9441547

Biological relevance of detected Alterations

- VHL. Von Hippel-Lindau syndrome (VHL) is a dominantly inherited familial cancer syndrome predisposing to a variety of malignant and benign tumors. A germline mutation of this gene is the basis of familial inheritance of VHL syndrome. The protein encoded by this gene is a component of the protein complex that includes elongin B, elongin C, and cullin-2, and possesses ubiquitin ligase E3 activity. This protein is involved in the ubiquitination and degradation of hypoxia-inducible-factor (HIF), which is a transcription factor that plays a central role in the regulation of gene expression by oxygen. RNA polymerase II subunit POLR2G/RPB7 is also reported to be a target of this protein. Alternatively spliced transcript variants encoding distinct isoforms have been observed. [provided by RefSeq, Jul 2008]
- KMT2B. This gene encodes a protein which contains multiple domains including a CXXC zinc finger, three PHD zinc fingers, two FY-rich domains, and a SET (suppressor of variegation, enhancer of zeste, and trithorax) domain. The SET domain is a conserved C-terminal domain that characterizes proteins of the MLL (mixed-lineage leukemia) family. This gene is ubiquitously expressed in adult tissues. It is also amplified in solid tumor cell lines, and may be involved in human cancer. Two alternatively spliced transcript variants encoding distinct isoforms have been reported for this gene, however, the full length nature of the shorter transcript is not known. [provided by RefSeq, Jul 2008]
- TET2. The protein encoded by this gene is a methylcytosine dioxygenase that catalyzes the conversion of methylcytosine to 5-hydroxymethylcytosine. The encoded protein is involved in myelopoiesis, and defects in this gene have been associated with several myeloproliferative disorders. Two variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2011]

Drug Information

Niraparib tosylate monohydrate (Zejula)

Niraparib (ZEJULA) is an inhibitor of poly (ADP-ribose) polymerase (PARP) with potential antineoplastic activity. PARP Inhibitor MK4827 inhibits PARP activity, enhancing the accumulation of DNA strand breaks and promoting genomic instability and apoptosis. The PARP family of proteins detect and repair single strand DNA breaks by the base-excision repair (BER) pathway. The specific PARP family member target for PARP inhibitor MK4827 is unknown. (NCI Thesaurus)

ZEJULA is a poly(ADP-ribose) polymerase (PARP) inhibitor indicated for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy.

Olaparib (Lynparza)

Olaparib (Lynparza) is an antineoplastic agent, Poly(ADP-ribose) Polymerase 1;2;3 inhibitor. (PARP1;2;3 inhibitor).

Lynparza is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated for the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated advanced ovarian cancer who have been treated with three or more prior lines of chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for Lynparza.

Rucaparib

Rucaparib is a potent mammalian poly(ADP-ribose) polymerase 1, 2 and 3 inhibitor with anticancer properties (PARP 1;2;3 inhibitor).

PPAR is an enzyme that plays an essential role in DNA repair by activating response pathways and facilitating repair, and defects in these repair mechanisms have been demonstrated in various malignancies, including cancer. Regulation of repair pathways is critical in promoting necessary cell death. BRCA genes are tumor suppressor genes mediate several cellular processes including DNA replication, transcription regulation, cell cycle checkpoints, apoptosis, chromatin structuring and homologous recombination (HR). Homologous recombination deficiency (HRD), along with PPAR inhibition, is a vulnerability that enhances the cell death pathway when the single mutations alone would permit viability. Ovarian cancer commonly possesses defects in DNA repair pathways such as HRD due to BRCA mutations or otherwise. Rucaparib has shown to induce cytotoxicity in tumor cell lines with deficiencies in BRCA1/2 and other DNA repair genes. Of all the BRCA1/2 mutations in ovarian cancer, most are due to germline mutations (18%), and approximately 7% represent somatic mutations acquired within the tumor.

Rucaparib is an inhibitor of PARP-1, PARP-2, and PARP-3. Via an inhibitory effect on the PARP enzymatic activity, rucaparib decreases the formation of PARP-DNA complexes resulting in DNA damage, apoptosis, and cell death. It is proposed that PARP inhibition specifically targets tumor cells with preexisting HRD, such as those cells possessing mutations in the BRCA1 or BRCA2 genes.

Talazoparib

Talazoparib is a poly(ADP-ribose) Polymerase 1, 2 (PARP 1;2 inhibitor). Talazoparib was approved by the FDA for use in germline BRCA mutated, HER2 negative, locally advanced or metastatic breast cancer on October 16, 2018 under the trade name Talzenna. Talazoparib prevents PARP-mediated repair of DNA damage in cancer cells, allowing accumulation of damage and PARP-DNA complexes. Repair related errors by error prone secondary repair pathways may also contribute to the cytotoxicity of Talazoparib. Talazoparib is indicated for the treatment of deleterious or

Tel: 1-866-484-8870 www.genomictestingcooperative.com CLIA #: 05D2111917 CAP #: 9441547

suspected deleterious germline BRCA mutated, HER2 negative locally advanced or metastatic breast cancer in adults

Bevacizumab

Bevacizumab (AVASTIN) is a recombinant humanized monoclonal IgG1 antibody that binds to and inhibits the biologic activity of human vascular endothelial growth factor (VEGF). Bevacizumab contains human framework regions and the complementarity-determining regions of a murine antibody that binds to VEGF. Bevacizumab binds VEGF and prevents the interaction of VEGF to its receptors (FIt-1 and KDR) on the surface of endothelial cells. This prevents blood vessel proliferation and in response retardation of metastatic tumor growth occurs.

Belzutifan

Belzutifan is an inhibitor of hypoxia-inducible factor 2a (HIF-2a) used in the treatment of von Hippel-Lindau (VHL) disease-associated cancers.

Belzutifan is indicated for the treatment of adult patients with von Hippel-Lindau (VHL) disease who require therapy for associated renal cell carcinoma (RCC), central nervous system (CNS) hemangioblastomas, or pancreatic neuroendocrine tumors (pNET), who do not require immediate surgery.

Potential Clinical Trials

Trial URL	Status	Title	Disease	Drug	Sites
https://classic.clinical trials.gov/show/NCT0 5468697	Recruiting	A Study of Belzutifan (MK-6482) in Combination with Palbociclib Versus Belzutifan Monotherapy in Participants with Advanced Renal Cell Carcinoma (MK-6482- 024/LITESPARK-024)	Renal Cell Carcinoma	Belzutifan Palbociclib	Georgetown University Medical Center (Site 1002), Washington, DC, United States Beth Israel Deaconess Medical Center- Cancer Clinical Trials Office (Site 1001), Boston, Massachusetts, United States Huntsman Cancer Institute-HCI Clinical Trials Office (Site 1004), Salt Lake City, Utah, United States
https://classic.clinical trials.gov/show/NCT0 5188118	Recruiting	Rapid Sequencing of Approved Therapies in Patients With Metastatic or Unresectable Clear Cell Renal Cell Carcinoma	Metastatic Renal Cell Carcinoma	Cabozantinib Ipilimumab Nivolumab Lenvatinib Everolimus	Icahn School of Medicine at Mount Sinai, New York, New York, United States
https://classic.clinical trials.gov/show/NCT0 3592472	Recruiting	A Study of Pazopanib With or Without Abexinostat in Patients With Locally Advanced or Metastatic Renal Cell Carcinoma (RENAVIV)	Metastatic Renal Cell Carcinoma	Pazopanib Abexinostat	University Of UA Cancer Center (UACC)/DH-SJHMC, Phoenix, Arizona, United States University of California Davis Comprehensive Cancer Center, Sacramento, California, United States Ochsner Clinic Foundation, New Orleans, Louisiana, United States

https://classic.clinical trials.gov/show/NCT0 5805501	Recruiting	A Study of Immune Checkpoint Inhibitor Combinations With Axitinib in Participants With Untreated Locally Advanced Unresectable or Metastatic Renal Cell Carcinoma	Metastatic Renal Cell Carcinoma	Tobemstomig Tiragolumab Pembrolizumab Axitinib	UC Irvine Medical Center, Orange, California, United States University of Colorado, Aurora, Colorado, United States Thompson Cancer Survival Center, Knoxville, Tennessee, United States
---	------------	---	------------------------------------	---	--

Detailed Results

Single N	Single Nucleotide Variant (SNV) and Insertions-Deletions (INDELS)											
Gene Name	Hgvsp	Hgvsc	Aminoacids	Codons	Consequence	Allele frequency	Read depth	Predicted effect on Protein				
VHL	NP_000542.1:p. Arg200AlafsTer5 6	NM_000551.3:c. 596dupA	E/EX	gag/gAag	frameshift_variant	30.0	600	0				
KMT2B	NP_055542.1:p. Asp1361Asn	NM_014727.1:c. 4081G>A	D/N	Gat/Aat	missense_variant	20.7	831	0				
TET2	NP_001120680. 1:p.Leu862Phefs Ter5	NM_001127208. 2:c.2586_2604de IGCATCACATGC AATATTTT	LHHMQYF/X	TTGCATCAC ATGCAATAT Ttt/tt		19.05	1480	0				

Methodology and Test Background

This is a next generation sequencing (NGS) test that analyzes DNA for abnormalities in 434 genes and RNA of >1600 genes that are reported to be altered in various types of solid tumors. The assay also detects several viruses that are important in oncology, including EBV, HPV and TTV. TTV (torque teno virus) was first discovered in a patient with non-A-E hepatitis and is now regarded as a part of the human virome. In general, TTV does not cause pathology in immunocompetent individuals. TTV is considered as a marker of immune competence in patients with immunological impairment and inflammatory disorders. High TTV load is associated with increased risk of infection. In patients with organ transplant, low TTV load is associated with an increased risk of rejection.

Nucleic acid is isolated from paraffin-embedded tissue. For optimal results neoplastic cells should be greater than 30% of the analyzed cells. H&E-sections are reviewed by a pathologist and tumor-enrichment is performed by macrodissection when possible. Testing is performed using massive parallel sequencing of the coding DNA of the listed genes. This includes sequencing of all the exons as well as approximately 50 nucleotides at the 5' and 3' ends of each coding exon to detect splice site abnormalities. The TERT promoter region, including the hotspots at -124 and -146 bp, is also covered. Our DNA sequencing method has a sensitivity of 3% for detecting hotspot mutations and 5% for detecting single nucleotide variants (SNVs) and small (<60 bp) insertions/ deletions (indels). MSI status is inferred by interrogating all available genomic microsatellites covered. Tumor mutational burden (TMB) is measured by counting all nonsynonymous variants and filter settings as follows: (A) Pass all filters; (B) inside genes; (C) had a mutant allele frequency >5%; (D) not found in the dbSNP (to exclude germline variations). The median for TMB is 10 mutations/Mb based on lung carcinoma analysis. The cut off for other types of tumors is not well-established at this time. Significant gene amplification and deletion (copy number variants) are also reported. Targeted RNA NGS is performed by hybrid capture and duplicates are excluded for levels measurements. The Universal Human Reference (UHR) RNA is used as control. All detected fusion transcripts are reported. While the major focus of the RNA analysis is the detection of fusion mRNA, mutations in the expressed RNA of the analyzed genes, HLA class I genotyping, and Epstein-Barr virus (EBV), human papillomavirus (HPV) and torque teno virus (TTV) viral RNA are also analyzed and reported. B- and T-cell clonality will be reported, if clonal or clinically relevant. The sensitivity of this assay in detecting fusion mRNA is between 5% and 10%. This test specifically covers translocations that lead to the expression of fusion

RNA. Translocations that lead to deregulation of expression can be addressed by this test if compared to the expression proper normal control. Since the clinical relevance of the RNA expression level of most of the genes is not characterized at this time, only a few specific genes will be commented on when abnormalities are detected. CD274 (PD-L1) mRNA levels are reported when they are significantly elevated. This assay is not designed to detect minimal residual disease and should be used for diagnosis. Performance of the assay may vary dependent on the quantity and quality of nucleic acid, sample preparation and sample age. Decalcified specimens have not been validated. Decalcification with strong acids is not recommended and may lead to poor nucleic acid quality and suboptimal results.

This test specifically covers translocations that lead to the expression of fusion RNA. Translocations that lead to deregulation of expression can be addressed by this test if compared to the expression proper normal control. Since the clinical relevance of the RNA expression level of most of the genes is not characterized at this time, only a few specific genes will be commented on when abnormalities are detected. CD274 (PD-L1) mRNA levels are reported when they are significantly elevated.

Based on our validation study, the following exonic regions of the genes listed below are not covered appropriately <100X coverage and sequencing by NGS may not be reliable in these regions. This poor coverage is mainly due to high GC content and inherent problem in obtaining adequate coverage. ASXL1 NM_001164603 20:30946620- 30946635, ATM NM_000051 11:108186550-108186638, BAP1 NM_004656 3:52443858-52443894, BCR NM_004327 22:23652510 -23652620, BRD4 NM_058243 19:15353808-15354193,5355041-15355411, CCNE1 NM_001238 19:30303463-30303485, CD274 NM_001267706 9:5456109-5456165, CD79A NM_001783 19:42384736-42384805, CSF3R NM 000760 1:36937667-36937740. DDX11 NM 001257144 12:31240872-31240917. ERBB3 NM 001982 12:56492284 -56492359, FANCI NM_001113378 15:89835919-89836052, FLT3 NM_004119 13:28674605-28674652, FLT4 NM_002020 5:180035281-180035284, GEN1 NM_001130009 2:17954486-17954525, H3-3A NM_002107 1:226259140-226259180, IRS2 NM_003749 13:110437126-110437363, 110437805-110437899, 110438359- 110438400, JAK1 NM_002227 1:65309747-65309771, MAGI2 NM_012301 7:77648719-77649044, MITF NM_000248 3:70005606-70005681, MYCL NM_001033081 1:40367518-40367565, NF1 NM_000267 17:29664837-29664898, NOTCH2 NM_001200001 1:120572528-120572610, PBRM1 NM_018313 3:52677264-52677322, PIK3R2 NM_005027 19:18272089-18272305, PMS2 NM_000535 7:6013024-6013173, RANBP2 NM_006267 2:109363166-109363254, 109367779-109367838, 109367984-109368069, 109369453-109369497, 109378578-109378651, .RHEB NM_005614 7:151216546-151216597, SUFU NM_001178133 10:104263911-104264039, TNFRSF14 NM_003820 1:2494304-2494335.

The table below contains a partial list of the tested DNA genes. For a complete list, please go to: https://genomictestingcooperative.com/genomic-tests/solid-tumor-profile-plus/ (click the DNA tab)

The table below contains a partial list of the tested RNA genes (Fusions/Expression). For a complete list, please go to: https://genomictestingcooperative.com/genomic-tests/solid-tumor-profile-plus/ (click the RNA tab)

Tested genes

Conor	. Toeta	nd for /	\ hnorn	aalitiaa	Genes Tested for Abnormalities in Coding Sequence											
Gene	s resid	eu ioi <i>F</i>	ADIIOIII	ilaiities	S III CO	uning St	equent	<i>.</i> E								
ABCB7	AURKB	C150RF41	CEBPA	DNMT3A	FANCC	FLT3	GRIN2A	IRF2	LM01	MSH6	NTRK2	POT1	RARA	SF3B1	STAT6	TSHR
ABL1	AURKC	CALR	CHD2	DOT1L	FANCD2	FLT4	GRM3	IRF4	LPIN2	MTOR	NTRK3	PPM1D	RB1	SLIT2	STK11	U2AF1
ABL2	AXIN1	CARD11	CHD4	EED	FANCE	F0XL2	GSK3B	IRS2	LRP1B	MUTYH	NUP93	PPP2R1A	RBBP6	SLX4	SUFU	U2AF2
ACD	AXIN2	CBFB	CHEK1	EGFR	FANCF	F0XP1	GSKIP	JAGN1	LYN	MVK	PAK3	PRDM1	RBM10	SMAD2	SUZ12	VEGFA
ACVR1B	AXL	CBL	CHEK2	EGLN1	FANCG	FRS2	H3F3A	JAK1	LYST	MYC	PALB2	PREX2	RBM8A	SMAD3	SYK	VHL
ADA	B2M	CBLB	CIC	ELANE	FANCI	FUBP1	HAX1	JAK2	LZTR1	MYCL	PARK2	PRKAR1A	RET	SMAD4	TAF1	WAS
AK2	BAP1	CBLC	CREBBP	EP300	FANCL	G6PC3	HGF	JAK3	MAGI2	MYCN	PAX5	PRKCI	RHEB	SMAD9	TAL1	WHSC1
AKT1	BARD1	CCND1	CRKL	EPAS1	FANCM	GABRA6	HIST1H3B	JUN	MAP2K1	MYD88	PBRM1	PRKDC	RHOA	SMAD9L	TBX3	WISP3
AKT2	BCL2	CCND2	CRLF2	EPCAM	FAS	GALNT12	HNF1A	KAT6A	MAP2K2	NBN	PDCD1LG2	PRSS1	RICTOR	SMARCA4	TCF3	WT1
AKT3	BCL2L1	CCND3	CSF1R	EPHA3	FAT1	GATA1	H0XA11	KDM5A	MAP2K4	NF1	PDGFRA	PRSS8	RIT1	SMARCB1	TCIRG1	XP01
ALK	BCL2L2	CCNE1	CSF3R	EPHA5	FBXW7	GATA2	HOXB13	KDM5C	MAP3K1	NF2	PDGFRB	PSTPIP1	RNF168	SMC1A	TERC	XRCC2
AMER1	BCL6	CD274	CTC1	EPHA7	FGF10	GATA3	HRAS	KDM6A	MAP3K14	NFE2L2	PDK1	PTCH1	RNF43	SMC3	TERF1	XRCC3

ANKRD26	BCOR	CD79A	CTCF	EPHB1	FGF14	GATA4	HSD3B1	KDR	MAPK1	NFKBIA	PHF6	PTEN	ROS1	SM0	TERF2	ZBTB2
APC	BCORL1	CD79B	CTNNA1	ERBB2	FGF19	GATA6	HSP90AA1	KEAP1	MCL1	NHP2	PIK3C2B	PTPN11	RPTOR	SNCAIP	TERF2IP	ZNF217
AR	BCR	CDAN1	CTNNB1	ERBB3	FGF23	GEN1	ID3	KEL	MDM2	NKX2-1	PIK3CA	QKI	RTEL1	SOCS1	TERT	ZNF703
ARAF	BIRC3	CDC73	CUL3	ERBB4	FGF3	GFI1	IDH1	KIF23	MDM4	NLRP3	PIK3CB	RAB27A	RUNX1	S0X10	TET2	ZRSR2
ARFRP1	BLM	CDH1	CUX1	ERCC4	FGF4	GFI1B	IDH2	KIT	MED12	NME1	PIK3CG	RAC1	RUNX1T1	SOX2	TGFBR2	-
ARID1A	BMPR1A	CDK12	CXCR4	ERG	FGF6	GID4	IGF1R	KLF1	MEF2B	N0P10	PIK3R1	RAD21	SBDS	SOX9	TNFAIP3	-
ARID1B	BRAF	CDK4	CYLD	ERRFI1	FGFR1	GLI1	IGF2	KLHL6	MEFV	NOTCH1	PIK3R2	RAD50	SBF2	SPEN	TNFRSF14	-
ARID2	BRCA1	CDK6	DAXX	ESR1	FGFR2	GLI2	IKBKE	KLLN	MEN1	NOTCH2	PIM1	RAD51	SDHA	SPOP	TNFRSF1A	-
ASXL1	BRCA2	CDK8	DDR2	ETV6	FGFR3	GNA11	IKZF1	KMT2A	MET	NОТСН3	PLCG1	RAD51B	SDHB	SPTA1	TOP1	-
ATG2B	BRD4	CDKN1A	DDX11	EX01	FGFR4	GNA13	IKZF3	KMT2B	MITF	NPM1	PLCG2	RAD51C	SDHC	SRC	TOP2A	-
ATM	BRIP1	CDKN1B	DDX41	EZH2	FH	GNAQ	IL2RG	KMT2C	MLH1	NRAS	PMS1	RAD51D	SDHD	SRSF2	TP53	-
ATR	BTG1	CDKN2A	DICER1	FAM175A	FLCN	GNAS	IL7R	KMT2D	MPL	NROB1	PMS2	RAD54L	SEC23B	STAG2	TRAF3	-
ATRX	втк	CDKN2B	DKC1	FAM46C	FLI1	GPR124	INHBA	KRAS	MRE11A	NSD1	POLD1	RAF1	SETBP1	STAT3	TSC1	-
AURKA	C11orf40	CDKN2C	DNM2	FANCA	FLT1	GREM1	INPP4B	LIG4	MSH2	NTRK1	POLE	RANBP2	SETD2	STAT4	TSC2	-

RNA Fusions/Expression

Fusion	Fusion/Expression												
ABL1	BCL2	CBFB	ERG	FGFR2	F0X01	IKZF3	MAP3K1	NTRK1	NUP98	PICALM	RHOA	SS18	TCF3
AKT3	BCL6	CIC	ETV6	FGFR3	FUS	JAK2	MECOM	NTRK2	PDGFRA	PML	ROS2	STAT6	TFG
ALK	BRAF	CREBBP	EWSR1	FIP1L1	GLI1	KIAA1549	MYC	NTRK3	PDGFRB	RARA	RUNX1	TAFG	YWHAE
BCL1	CAMTA1	EGFR	FGFR1	FLAG1	HMGA2	KMT2A	NOTCH1	NUP214	PD-L1	RET	RUNX1T1	TAL1	

Reference

- Renal Cell Cancer. McGregor BA, Choueiri TK. McGregor BA, et al. Hematol Oncol Clin North Am. 2023 Oct;37(5):xvii-xix. doi: 10.1016/j.hoc.2023.05.019. Epub 2023 Jun 15. Hematol Oncol Clin North Am. 2023. PMID: 37330344
- Current status of antigen-specific T-cell immunotherapy for advanced renal-cell carcinoma. Xu Y, Miller CP, Warren EH, Tykodi SS. Xu Y, et al. Hum Vaccin Immunother. 2021 Jul 3;17(7):1882-1896. doi: 10.1080/21645515.2020.1870846. Epub 2021 Mar 5. Hum Vaccin Immunother. 2021. PMID: 33667140
- 3. Systemic treatment for renal cell carcinoma: an overview. Swanson DA. Swanson DA. Prog Clin Biol Res. 1990;350:201-25. Prog Clin Biol Res. 1990. PMID: 2201044
- Adjuvant ipilimumab and nivolumab in renal cell carcinoma: more questions than answers. Vogl UM, McDermott D, Powles T. Vogl UM, et al. Lancet. 2023 Mar 11;401(10379):796-798. doi: 10.1016/S0140-6736(22)02631-9. Epub 2023 Feb 9. Lancet. 2023. PMID: 36774931

Electronic Signature

Ahmad Charifa, M.D.

The test (sample processing, sequencing and data generation) was performed at Genomic Testing Cooperative, LCA, Genomic Testing Cooperative, LCA, 175 Technology Drive, LCA, 175 Technology Drive, Suite 100, Irvine, CA 92618. Medical Director: Maher Albitar, M.D. Analysis of the data was performed by Genomic Testing Cooperative, LCA, 175 Technology Drive, Suite 100, Irvine, CA 92618. Medical Director: Maher Albitar, M.D.

The test was developed and its performance characteristics have been determined by Genomic Testing Cooperative, LCA. This test has not been approved by the FDA. The FDA has determined such clearance or approval is not necessary. This laboratory is CLIA certified to perform high complexity clinical testing.