

## **Hematology Profile Plus**

| Patient Name:   |                 |       |          | Ordering Physician:     |                                                      |
|-----------------|-----------------|-------|----------|-------------------------|------------------------------------------------------|
| Date of Birth:  |                 |       |          | Physician ID:           |                                                      |
| Gender (M/F):   |                 |       |          | Accession #:            |                                                      |
| Client:         |                 |       |          | Specimen Type:          |                                                      |
| Case #:         |                 |       |          | Specimen ID:            |                                                      |
| Body Site:      | Lt Illiac Crest |       |          |                         |                                                      |
| MRN:            |                 |       |          | Indication for Testing: | R79.89                                               |
| Collected Date: |                 | Time: | 12:00 AM |                         | Other specified abnormal findings of blood chemistry |
| Received Date:  |                 | Time: | 12:28 PM |                         | chemistry                                            |
| Reported Date:  |                 | Time: | 01:47 PM |                         |                                                      |

| Detected Genomic Alterations                           |                         |                                                                                                  |                                                |                                    |  |  |  |  |
|--------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|--|--|--|--|
| CDKN1B<br>(?Germline)                                  | TP53                    | PLCG1<br>(3 mutations)                                                                           | CEBPA                                          | MTOR                               |  |  |  |  |
| GRIN2A                                                 | NOTCH1<br>(3 mutations) | EP300                                                                                            | KMT2C<br>(3 mutations)                         | GATA3                              |  |  |  |  |
| CCR4                                                   | TFPT                    | Autosomal<br>chromosomes<br>show: 8p-(distal),<br>8p+(proximal), 9q-,<br>13q-, +15, 18q+,<br>+21 | HTLV1 viral RNA :<br>Detected (8239<br>copies) | B-cell clonality : Not<br>detected |  |  |  |  |
| T-cell clonality :<br>Detected (TRAV 9-<br>2/TRBV 5-4) | -                       |                                                                                                  |                                                |                                    |  |  |  |  |

## **Results Summary**

- -Somatic mutations in TP53, PLCG1 (3 mutations), CEBPA, MTOR, GRIN2A, NOTCH1 (3 mutations), EP300, KMT2C (3 mutations), GATA3, CCR4, and TFPT genes
  - -Possible germline mutation in CDKN1B gene, heterozygous
  - -EBV viral RNA: Not detected -HPV viral RNA: Not detected -TTV viral RNA: Not detected
  - -HLA Genotyping:

-HLA-A: A\*01:01-A\*68:02 -HLA-B: B\*49:01-B\*58:01 -HLA-C: C\*07:01-C\*07:01

-Autosomal chromosomes show: 8p-(distal), 8p+(proximal), 9q-, 13q-, +15, 18q+, +21

-T-cell markers RNA ratios: CD3D:CD3E Ratio: 1.88 CD4:CD8A Ratio: 42.47 CD4:CD8B Ratio: 74.99

Patient Name: Page 1 of 9



CD4:CD26 Ratio: 1064.33 CD4:CD7 Ratio: 31.46

- -Increased T-cell markers with abnormal expression pattern
- -LowB-cell markers
  -Low CD30 mRNA
- -These findings are consistent with adult T-cell lymphoma with HTLVI positivity.
- -The CDKN1B mutation is detected at high level, raising the possibility of a germline mutation. This mutation leads to early termination (loss of function). However, there is no data on its clinical relevance and should be classified as of "uncertain significance" at this time.

See additional report information at the end of the report.

#### Heterogeneity

There are abnormal clones with TP53, PLCG1 (3 mutations), CEBPA, MTOR, GRIN2A, NOTCH1 (3 mutations), EP300, KMT2C(3 mutations), GATA3, CCR4, and TFPT mutations.

The CDKN1B mutation is detected at a high level, possible germline abnormality.

| Expression                                                |                    |
|-----------------------------------------------------------|--------------------|
| Increased T-cell markers with abnormal expression pattern | Low B-cell markers |

| Diagnostic Implications                                                                                                                       |                                                                                                                           |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CDKN1B, TP53, PLCG1<br>(3 mutations), CEBPA,<br>MTOR, GRIN2A,<br>NOTCH1 (3 mutations),<br>EP300, KMT2C (3<br>mutations), GATA3,<br>CCR4, TFPT | -These findings are consistent with T-cell lymphoma with HTLM positivityThe CDKN1B mutation is likely a germline variant. |  |  |  |  |  |  |  |

| Therapeutic Implications |                                                                                                        |  |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| TP53                     | Aurora kinase A inhibitors, Wee1 inhibitors, Chk1 inhibitors, kevetrin, APR-246, nutlins, gene therapy |  |  |  |  |  |  |
| MTOR                     | MTOR inhibitors                                                                                        |  |  |  |  |  |  |
| GRIN2A                   | GRIN2A inhibitors                                                                                      |  |  |  |  |  |  |
| NOTCH1                   | NOTCH inhibitors                                                                                       |  |  |  |  |  |  |
| EP300                    | Bromodomain Extra-Terminal (BET) inhibitors                                                            |  |  |  |  |  |  |

| Prognostic Implicatio | ns   |
|-----------------------|------|
| TP53                  | Poor |

Patient Name: Page 2 of 9



| PLCG1 (3 mutations)  | Unknown |
|----------------------|---------|
| CEBPA                | Neutral |
| MTOR                 | Poor    |
| GRIN2A               | Unknown |
| NOTCH1 (3 mutations) | Poor    |
| EP300                | Poor    |
| KMT2C (3 mutations)  | Unknown |
| GATA3                | Unknown |
| CCR4                 | Unknown |
| TFPT                 | Unknown |

#### Relevant Genes with NO Alteration

No evidence of mutation in SF3B1 or MYD88

#### **Test Description:**

This is a comprehensive molecular profile which uses next generation sequencing (NGS) to identify molecular abnormalities, including single nucleotide variants (SNVs), insertions/deletions (indels), copy number variants (CNVs), fusions, B- and T-cell clonality, IgVH mutation analysis, and viruses (HPV, EBV, and TTV), in DNA of 302 genes and RNA in greater than 1600 genes implicated in hematologic neoplasms, including leukemia, lymphoma, myeloma, myelodysplastic syndrome, and myeloproliferative neoplasms. Whenever possible, clinical relevance and implications of detected abnormalities are described below. If a gene is not reported, then no somatic mutations were detected. This assay facilitates myelodysplastic syndrome risk assessment as it includes evaluation for mutations and significant chromosomal gains and losses in all of the genes included in the IPSS-M risk calculator: ASXL1, BCOR, BCORL1, CBL, CEBPA, DNMT3A, ETNK1, ETV6, EZH2, FLT3, GATA2, GNB1, IDH1, IDH2, KMT2A (including KMT2A(MLL)-PTD), KRAS, NF1, NPM1, NRAS, PHF6, PPM1D, PRPF8, PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, STAG2, TP53, U2AF1, and WT1.

## **Biological relevance of detected Alterations**

- CDKN1B. This gene encodes a cyclin-dependent kinase inhibitor, which shares a limited similarity with CDK inhibitor CDKN1A/p21. The encoded protein binds to and prevents the activation of cyclin E-CDK2 or cyclin D-CDK4 complexes, and thus controls the cell cycle progression at G1. The degradation of this protein, which is triggered by its CDK dependent phosphorylation and subsequent ubiquitination by SCF complexes, is required for the cellular transition from quiescence to the proliferative state. Mutations in this gene are associated with multiple endocrine neoplasia type IV (MEN4). [provided by RefSeq, Apr 2014]
- TP53. This gene encodes a tumor suppressor protein containing transcriptional activation, DNA binding, and oligomerization domains. The encoded protein responds to diverse cellular stresses to regulate expression of target genes, thereby inducing cell cycle arrest, apoptosis, senescence, DNA repair, or changes in metabolism. Mutations in this gene are associated with a variety of human cancers, including hereditary cancers such as Li-Fraumeni syndrome. Alternative splicing of this gene and the use of alternate promoters result in multiple transcript variants and isoforms. Additional isoforms have also been shown to result from the use of alternate translation initiation codons from identical transcript variants (PMIDs: 12032546, 20937277). [provided by RefSeq, Dec 2016]
- PLCG1. The protein encoded by this gene catalyzes the formation of inositol 1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. This reaction uses calcium as a cofactor and plays an important role in the intracellular transduction of receptor-mediated tyrosine kinase activators. For example, when activated by SRC, the encoded protein causes the Ras guanine nucleotide exchange factor RasGRP1 to translocate to the Golgi, where it activates Ras. Also, this protein has been shown to be a major substrate for heparin-binding growth factor 1 (acidic fibroblast growth factor)-activated tyrosine kinase. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

Patient Name: Page 3 of 9



- CEBPA. Acute myeloid leukemia (AML) with CEBPA mutation is characterized by CEBPA mutation that should be biallelic (biCEBPA) or, if single, must be located in the basic leucine zipper (bZIP) region of the gene (smbZIPCEBPA) (WHO 5th edition). For proper classification of AML, it is recommended to test for CEBPA and other recurrent, defining genetic abnormalities. CEBPA mutations are common in cytogenetically normal AML (CN-AML). AML with biCEBPA or smbZIP CEBPA has a favorable prognosis in children and adults up to 70 years old. Among cases with biCEBPA, approximately 5-10% have a germline N-terminal mutation. CEBPA is an intronless gene that encodes a DNA-binding protein that regulates myeloid differentiation and stem/progenitor cell function. The bZIP region is required for dimerization and DNA binding of this protein. N-terminal nonsense (frameshift) mutations result in a dominant negative C/EBP-alpha protein while C-terminal inframe mutations in the b-ZIP domain reduce the DNA-binding potential of this transcription factor. The use of alternative in-frame non-AUG (GUG) and AUG start codons results in protein isoforms with different lengths. Differential translation initiation is mediated by an out-of-frame, upstream open reading frame which is located between the GUG and the first AUG start codons. [RefSeq (Dec 2013) and WHO Classification of Haematolymphoid Tumours, 5th edition online, IARC (accessed 01-31-2024)]
- MTOR. The protein encoded by this gene belongs to a family of phosphatidylinositol kinase-related kinases. These kinases mediate cellular responses to stresses such as DNA damage and nutrient deprivation. This kinase is a component of two distinct complexes, mTORC1, which controls protein synthesis, cell growth and proliferation, and mTORC2, which is a regulator of the actin cytoskeleton, and promotes cell survival and cell cycle progression. This protein acts as the target for the cell-cycle arrest and immunosuppressive effects of the FKBP12-rapamycin complex. Inhibitors of mTOR are used in organ transplants as immunosuppressants, and are being evaluated for their therapeutic potential in SARS-CoV-2 infections. Mutations in this gene are associated with Smith-Kingsmore syndrome and somatic focal cortical dysplasia type II. The ANGPTL7 gene is located in an intron of this gene. [provided by RefSeq, Aug 2020]
- GRIN2A. This gene encodes a member of the glutamate-gated ion channel protein family. The encoded protein is an N-methyl-D-aspartate (NMDA) receptor subunit. NMDA receptors are both ligand-gated and voltage-dependent, and are involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. These receptors are permeable to calcium ions, and activation results in a calcium influx into post-synaptic cells, which results in the activation of several signaling cascades. Disruption of this gene is associated with focal epilepsy and speech disorder with or without cognitive disability. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]
- NOTCH1. This gene encodes a member of the NOTCH family of proteins. Members of this Type I transmembrane protein family share structural characteristics including an extracellular domain consisting of multiple epidermal growth factor-like (EGF) repeats, and an intracellular domain consisting of multiple different domain types. Notch signaling is an evolutionarily conserved intercellular signaling pathway that regulates interactions between physically adjacent cells through binding of Notch family receptors to their cognate ligands. The encoded preproprotein is proteolytically processed in the trans-Golgi network to generate two polypeptide chains that heterodimerize to form the mature cell-surface receptor. This receptor plays a role in the development of numerous cell and tissue types. Mutations in this gene are associated with aortic valve disease, Adams-Oliver syndrome, T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and head and neck squamous cell carcinoma. [provided by RefSeq, Jan 2016]
- EP300. This gene encodes the adenovirus E1A-associated cellular p300 transcriptional co-activator protein. It functions as histone acetyltransferase that regulates transcription via chromatin remodeling and is important in the processes of cell proliferation and differentiation. It mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. This gene has also been identified as a co-activator of HIF1A (hypoxia-inducible factor 1 alpha), and thus plays a role in the stimulation of hypoxia-induced genes such as VEGF. Defects in this gene are a cause of Rubinstein-Taybi syndrome and may also play a role in epithelial cancer. [provided by RefSeq, Jul 2008]
- KMT2C. This gene is a member of the myeloid/lymphoid or mixed-lineage leukemia (MLL) family and encodes a nuclear protein with an AT hook DNA-binding domain, a DHHC-type zinc finger, six PHD-type zinc fingers, a SET domain, a post-SET domain and a RING-type zinc finger. This protein is a member of the ASC-2/NCOA6 complex (ASCOM), which possesses histone methylation activity and is involved in transcriptional coactivation. [provided by RefSeq, Jul 2008]
- GATA3. This gene encodes a protein which belongs to the GATA family of transcription factors. The protein contains two GATA-type zinc
  fingers and is an important regulator of T-cell development and plays an important role in endothelial cell biology. Defects in this gene are the
  cause of hypoparathyroidism with sensorineural deafness and renal dysplasia. [provided by RefSeq, Nov 2009]
- CCR4. The protein encoded by this gene belongs to the G-protein-coupled receptor family. It is a receptor for the CC chemokine MIP-1, RANTES, TARC and MCP-1. Chemokines are a group of small polypeptide, structurally related molecules that regulate cell trafficking of various types of leukocytes. The chemokines also play fundamental roles in the development, homeostasis, and function of the immune system, and they have effects on cells of the central nervous system as well as on endothelial cells involved in angiogenesis or angiostasis. [provided by RefSeq, Jul 2008]
- TFPT. Predicted to enable DNA binding activity and protein kinase binding activity. Involved in apoptotic signaling pathway. Located in nucleoplasm. Part of Ino80 complex. [provided by Alliance of Genome Resources, Apr 2022]

## **Drug Information**

#### **APR-246**

APR-246 is a first-in-class agent targeting mutant p53. In vitro and in vivo preclinical models have demonstrated that APR-246 has excellent efficacy in OC (both adenocarcinoma and squamous cell carcinoma) and potently synergises with chemotherapies used in the treatment of OC, restoring

Patient Name: Page 4 of 9



sensitivity to chemotherapy-resistant tumours. An initial phase I clinical trial has shown APR-246 to be safe in humans and early results from a currently running phase Ib/II trial of APR-246 with carboplatin and liposomal doxorubicin in ovarian cancer have been promising. Together, these data provide a strong rationale for investigating the efficacy of APR-246 in OC.

APR-246 has been used in trials studying the treatment of Prostatic Neoplasms, Hematologic Neoplasms, and Platinum Sensitive Recurrent Highgrade Serous Ovarian Cancer With Mutated p53.

APR-246 is an analogue of PRIMA-1, which modifies the core domain of mutant p53, resulting in restoration of wild-type p53 conformation and reactivation of normal p53 function, leading to increased cell cycle arrest and tumor cell death (PMID: 20498645).

#### **Everolimus**

Everolimus is a PI3K/Akt/mTOR pathway inhitior. The PI3K/Akt/mTOR plays a cruitial role in trastuzumab resistance, dysregulating the HER2 downstream signal. The mTOR inhibitor everolimus inhibits the mTOR/S6K signal, and therefore improves fluorouracil-induced apoptosis in gastric cancer cells with HER2 amplification. A concordant therapy using HER2-targeted agents and everolimus might lead to an improvement in therapy of HER2-positive gastric cancer.

#### **Temsirolimus**

Temsirolimus is an inhibitor of mTOR (mammalian target of rapamycin). Temsirolimus binds to an intracellular protein (FKBP12), and the protein-drug complex inhibits the activity of mTOR that controls cell division. Inhibition of mTOR activity resulted in a G1 growth arrest in treated tumor cells. When mTOR was inhibited, its ability to phosphorylate p70S6k and S6 ribosomal protein, which are downstream of mTOR in the PI3 kinase/AKT pathway was blocked. In in vitro studies using renal cell carcinoma cell lines, temsirolimus inhibited the activity of mTOR and resulted in reduced levels of the hypoxia-inducible factors HIF-1 and HIF-2 alpha, and the vascular endothelial growth factor.

Temsirolimus is indicated for the treatment of renal cell carcinoma (RCC). Also investigated for use/treatment in breast cancer, lymphoma (unspecified), rheumatoid arthritis, and multiple myeloma.

#### **Brontictuzumab**

Brontictuzumab is a humanized monoclonal antibody directed against the Notch-1 receptor with potential antineoplastic activity. Upon administration, brontictuzumab binds to Notch-1 on the cell surface, thereby inhibiting Notch-mediated signaling and tumor cell proliferation. Notch 1, a type 1 transmembrane protein belonging to the Notch family, functions as a receptor for membrane bound ligands and has various roles during development; dysregulated Notch signaling is associated with increased cell growth and chemoresistance in cancers.

#### **Birabresib**

Birabresib (OTX015 or MK-8628) is a potent BET bromodomian inhibitor, which targets the BET bromodomain proteins 2, 3, and 4 (BRD2/3/4). BRDs 2, 3, and 4 are considered potential cancer targets because of their pivotal role in regulating the transcription of growth-promoting genes and cell cycle regulators. OTX015 is the first BRD2/3/4 inhibitor to enter clinical trials. Upon administration, birabresib binds to the acetylated lysine recognition motifs on the bromodomain of BET proteins, thereby preventing the interaction between the BET proteins and acetylated histone peptides. This disrupts chromatin remodeling and gene expression.

#### **Potential Clinical Trials**

| Trial URL                                            | Status     | Title                                                                                                                                                                   | Disease         | Drug                                                                      | Sites                                                                                                                                                                                                              |
|------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| https://clinicaltrials.g<br>ov/study/NCT040685<br>97 | Recruiting | An Open-label Phase I/IIa Study to Evaluate the Safety and Efficacy of CCS1477 as Monotherapy and in Combination in Patients With Advanced Haematological Malignancies. | T-Cell Lymphoma | CCS1477,<br>Pomalidomide,<br>Dexamethasone,<br>Azacitidine,<br>Venetoclax | Emory Winship Cancer<br>Institute, Atlanta,<br>Georgia 30322<br>The Center for Cancer<br>and Blood Disorders<br>(CCBD), Bethesda,<br>Maryland 20817<br>Community Health<br>Network, Indianapolis,<br>Indiana 46227 |

Patient Name: Page 5 of 9



| https://clinicaltrials.g<br>ov/study/NCT066980<br>03 | Recruiting | A Phase 2 Study for<br>Screening and<br>Prevention of Adult T-<br>cell<br>Leukemia/Lymphoma<br>With Mogamulizumab<br>in High-Risk Carriers<br>of HTLV-1 | T-Cell Lymphoma | Mogamulizumab                                                                                                                                                                                        | Memorial Sloan Kettering Monmouth (All protocol activities), Middletown, New Jersey 07748 Memorial Sloan Kettering at Basking Ridge (All protocol activities), Basking Ridge, New Jersey 07920 Memorial Sloan Kettering Cancer Center (All Protocol Activities), New York, New York 10065 |
|------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| https://clinicaltrials.g<br>ov/study/NCT066924<br>52 | Recruiting | A Phase II Study of<br>Tazemetostat in<br>Combination With<br>CHOP for Previously<br>Untreated T Cell<br>Lymphoma                                       | T-Cell Lymphoma | Tazemetostat, Doxorubicin, Vincristine, Prednisone, Cytoxan, Carmustine, Etoposide, Cytarabine, Melphalan                                                                                            | Dana-Farber Cancer<br>Institute, Boston,<br>Massachusetts 02115<br>Beth Israel Deaconess<br>Medical Center,<br>Boston,<br>Massachusetts 02215<br>Brigham and Women's<br>Hospital, Boston,<br>Massachusetts 02215                                                                          |
| https://clinicaltrials.g<br>ov/study/NCT043010<br>76 | Recruiting | A Phase 1 Study of<br>Lenalidomide in<br>Combination With<br>EPOCH Chemotherapy<br>for HTLV-Associated<br>Adult T-Cell Leukemia-<br>Lymphoma (ATLL)     | T-Cell Lymphoma | Biospecimen Collection, Bone Marrow Biopsy, Computed Tomography, Cyclophosphamide, Doxorubicin Hydrochloride, Etoposide, Lenalidomide, Positron Emission Tomography, Prednisone, Vincristine Sulfate | Emory University Hospital Midtown, Atlanta, Georgia 30308 Emory University Hospital/Winship Cancer Institute, Atlanta, Georgia 30322 VCU Massey Comprehensive Cancer Center, Richmond, Virginia 23298                                                                                     |

## **Detailed Results**

| Single Nucleotide Variant (SNV) and Insertions-Deletions (INDELS) |                              |                           |             |         |                  |                     |               |                             |  |
|-------------------------------------------------------------------|------------------------------|---------------------------|-------------|---------|------------------|---------------------|---------------|-----------------------------|--|
| Gene name                                                         | Hgvsp                        | Hgvsc                     | Amino acids | Codons  | Consequence      | Allele<br>frequency | Read<br>depth | Predicted effect on protein |  |
| CDKN1B                                                            | NP_004055.1:p.<br>Glu105Ter  | NM_004064.3:c.<br>313G>T  | E/*         | Gag/Tag | stop_gained      | 45.37               | 1567          | 0                           |  |
| TP53                                                              | NP_000537.3:p.<br>Arg273His  | NM_000546.5:c.<br>818G>A  | R/H         | cGt/cAt | missense_variant | 21.17               | 1346          | tolerated                   |  |
| PLCG1                                                             | NP_002651.2:p.<br>Asp342Asn  | NM_002660.2:c.<br>1024G>A | D/N         | Gac/Aac | missense_variant | 12.72               | 1596          | deleterious                 |  |
| CEBPA                                                             | NP_004355.2:p.<br>Tyr147Ter  | NM_004364.3:c.<br>441C>G  | Υ/*         | taC/taG | stop_gained      | 11.74               | 1201          | 0                           |  |
| MTOR                                                              | NP_004949.1:p.<br>Gln45Ter   | NM_004958.3:c.<br>133C>T  | Q/*         | Cag/Tag | stop_gained      | 11.49               | 1279          | 0                           |  |
| GRIN2A                                                            | NP_000824.1:p.<br>Phe1158Val | NM_000833.3:c.<br>3472T>G | F/V         | Ttc/Gtc | missense_variant | 11.33               | 1174          | tolerated                   |  |

Patient Name: Page 6 of 9



| NOTCH1     | NP_060087.3:p.<br>Gly1301Glu              | NM_017617.3:c.<br>3902G>A       | G/E                | gGg/gAg                                                | "missense_variant,s<br>plice_region_variant<br>" | 9.72  | 2911 | deleterious |
|------------|-------------------------------------------|---------------------------------|--------------------|--------------------------------------------------------|--------------------------------------------------|-------|------|-------------|
| EP300      | NP_001420.2:p.<br>Phe1353ProfsTe<br>r9    | NM_001429.3:c.<br>4056_4063del  | FPY/X              | tcCTTTCCA<br>Tac/tcac                                  | frameshift_variant                               | 9.25  | 1286 | 0           |
| KMT2C      | NP_733751.2:p.<br>Gly972Arg               | NM_170606.2:c.<br>2914G>A       | G/R                | Gga/Aga                                                | missense_variant                                 | 8.11  | 715  | deleterious |
| NOTCH1     | NP_060087.3:p.<br>Ser2432Arg              | NM_017617.3:c.<br>7296C>G       | S/R                | agC/agG                                                | missense_variant                                 | 7.93  | 2421 | tolerated   |
| GATA3      | NP_001002295.<br>1:p.Ser67ProfsT<br>er225 | NM_001002295.<br>1:c.199_233del | NSVRATVQRY<br>PP/X | aACTCGGTC<br>AGGGCCAC<br>GGTGCAGA<br>GGTACCCT<br>CCG/a | frameshift_variant                               | 7.34  | 2601 | 0           |
| NOTCH1     | NP_060087.3:p.<br>Ser2439Arg              | NM_017617.3:c.<br>7317C>G       | S/R                | agC/agG                                                | missense_variant                                 | 7.14  | 2214 | tolerated   |
| KMT2C      | NP_733751.2:p.<br>Asp341Val               | NM_170606.2:c.<br>1022A>T       | D/V                | gAt/gTt                                                | missense_variant                                 | 3.66  | 410  | deleterious |
| PLCG1      | NP_002651.2:p.<br>Phe691lle               | NM_002660.2:c.<br>2071T>A       | F/I                | Ttc/Atc                                                | missense_variant                                 | 2.6   | 1271 | deleterious |
| PLCG1      | NP_002651.2:p.<br>Arg707Gln               | NM_002660.2:c.<br>2120G>A       | R/Q                | cGg/cAg                                                | "missense_variant,s<br>plice_region_variant<br>" | 1.46  | 1028 | deleterious |
| KMT2C      | NP_733751.2:p.<br>Ser773Pro               | NM_170606.2:c.<br>2317T>C       | S/P                | Tca/Cca                                                | missense_variant                                 | 1.13  | 705  | deleterious |
| CCR4 (RNA) | NP_005499.1:p.<br>Tyr347Ter               | NM_005508.4:c.<br>1041C>A       | Υ/*                | taC/taA                                                | stop_gained                                      | 22.59 | 1098 | 0           |
| TFPT (RNA) | NP_037474.1:p.<br>Arg201Ter               | NM_013342.3:c.<br>601C>T        | R/*                | Cga/Tga                                                | stop_gained                                      | 13.1  | 145  | 0           |

## **Methodology and Test Background**

This is a next generation sequencing (NGS) test that involves separate analysis of DNA and RNA panels for abnormalities that are reported in various types of hematologic neoplasms. The DNA panel is composed of 302 genes and the RNA panel is composed of >1600 genes. The DNA and RNA components of this assay were developed, validated, and set up as separate workflows, with independent extraction, library preparation, sequencing, and analysis pipelines. The NGS assay also detects several viruses that are important in oncology, including EBV, HPV and TTV. TTV (torque teno virus) was first discovered in a patient with non-A-E hepatitis and is now regarded as a part of the human virome. In general, TTV does not cause pathology in immunocompetent individuals. TTV is considered as a marker of immune competence in patients with immunological impairment and inflammatory disorders. High TTV load is associated with increased risk of infection. In patients with organ transplant, low TTV load is associated with an increased risk of rejection.

Nucleic acid is isolated from fresh cells, peripheral blood cells, bone marrow, body fluid, or paraffin-embedded tissue. For optimal results, neoplastic cells should be >30% of the analyzed cells. For fresh bone marrow specimens with the clinical indication of myeloma, enrichment for CD138-positive cells may be performed using immunomagnetic positive selection and both the CD138-positive and CD138-negative cell fractions extracted for NGS testing and the findings integrated within the final report. Testing is performed using massive parallel sequencing of the coding DNA of the listed genes. This includes sequencing of all the exons as well as approximately 50 nucleotides at the 5' and 3' ends of each coding exon to detect splice site abnormalities. The TERT promoter region, including the hotspots at -124 and -146 bp, is also covered. Our DNA sequencing method has a sensitivity of 1% for detecting single nucleotide variants (SNVs) and small (<60 bp) insertions/ deletions (indels). Significant gene amplification and deletion (copy number variants) are also reported. In addition, fragment length analysis is performed for CALR, FLT3, and NPM1 to enhance the detection of large indels and has a sensitivity of 2%-5% for detecting CALR, FLT3-ITD, and NPM1 indels in wildtype background. For cases with indication of acute myeloid leukemia, preliminary FLT3-ITD results based on fragment

Patient Name: Page 7 of 9



analysis will be reported. Targeted RNA NGS is performed by hybrid capture and duplicates are excluded for levels measurements. The Universal Human Reference (UHR) RNA is used as control. All detected fusion transcripts are reported. While the major focus of the RNA analysis is the detection of fusion mRNA, mutations in the expressed RNA of the analyzed genes, B- and T-cell clonality, HLA class I genotyping, and Epstein-Barr virus (EBV), human papillomavirus (HPV) and torque teno virus (TTV) viral RNA are also analyzed and reported. In cases of suspected chronic lymphocytic leukemia (CLL), IgVH mutation rate will also be reported. The sensitivity of this assay for detecting fusion mRNA is between 5% and 10%. This test specifically detects translocations that lead to the expression of fusion RNA. Translocations that lead to deregulation of expression can be addressed by this test if compared to the proper normal expression control. Since the clinical relevance of the RNA expression level of most of the genes is not well-characterized at this time, only a small subset of the genes may be described based on the suspected disease, including but not limited to MYC, BCL2, CD274, CD19, CD22, CD34, and CD138. CRLF2 mRNA levels are reported in acute lymphoblastic leukemia. CD274 (PD-L1) mRNA levels are reported when they are significantly elevated. Performance of the assay may vary dependent on the quantity and quality of nucleic acid, sample preparation, and sample age. Decalcified specimens have not been validated. Decalcification with strong acids is not recommended and may lead to poor nucleic acid quality and suboptimal results.

Based on our validation study, the following exonic regions of the genes listed below are not covered appropriately <100 X coverage and sequencing by NGS may not be reliable in these regions. The poor coverage is primarily due to the inherent difficulty in obtaining adequate sequencing coverage in regions with high GC content. No well-characterized hotspots are present in these regions. RAD51 NM\_133487 chr15:40994004-40994124, BRCA1 NM\_007300 chr17:41231351-41231416, FUBP1 NM\_003902 chr1:78435609-78435699, CBLB NM\_170662 chr3:105420938-105421303, TERT NM\_198253 chr5:1295183-1295250, ARID1B NM\_017519 chr6:157098715-157100605, CUX1 NM\_001202543 chr7:101740644-101740781, KMT2C NM\_170606 chr7:151891314-151891346 and 151935792-151935911, GALNT12 NM\_024642 chr9:101569952-101570351, ATM NM\_000051 chr11:108164040-108164204, CDK17 NM\_001170464 chr12:96679880-96679926, RB1 NM\_000321 chr13:48954189-48954220, SETBP1 NM\_015559 chr18:42643044-42643692, KMT2B NM\_014727 chr19:36208921-36209283, AR NM\_000044 chrX:66764889-66766604, STAG2 NM\_001042749 chrX:123200025-123200112.

The table below may contain a partial list of the tested DNA genes. For a complete list, please go to: <a href="https://genomictestingcooperative.com/genomic-tests/qtc-hematology-profile-plus/(click the DNA tab)">https://genomictestingcooperative.com/genomic-tests/qtc-hematology-profile-plus/(click the DNA tab)</a>

The table below contains a partial list of the tested RNA genes (Fusions/Expression). For a complete list, please go to: https://genomictestingcooperative.com/genomic-tests/gtc-hematology-profile-plus/(click the RNA tab)

## **Tested genes**

| Genes    | Tested | for Abr | ormaliti | es in Co | ding Se            | quence |       |                 |         |        |        |        |
|----------|--------|---------|----------|----------|--------------------|--------|-------|-----------------|---------|--------|--------|--------|
| ABL1     | B2M    | CCNE1   | CUX1     | ETNK1    | GALNT12            | IL7R   | MCL1  | NFE2L2          | PIM1    | RB1    | SM0    | TRAF3  |
| ABRAXAS1 | BAP1   | CD274   | CXCR4    | ETV6     | GATA1              | INHBA  | MDM2  | NFKBIA          | PLCG1   | RET    | SOCS1  | TSC1   |
| ACVR1B   | BARD1  | CD79A   | CYLD     | EX01     | GATA2              | IRF4   | MDM4  | NKX2-1          | PMS1    | RHEB   | SOX2   | TSC2   |
| AKT1     | BCL2   | CD79B   | DAXX     | EZH2     | GATA3              | JAK1   | MED12 | NOTCH1          | PMS2    | RHOA   | SOX9   | TSHR   |
| AKT2     | BCL2L1 | CDC73   | DDR2     | FANCA    | GEN1               | JAK2   | MEF2B | NOTCH2          | POLD1   | RIT1   | SP0P   | U2AF1  |
| AKT3     | BCL6   | CDH1    | DDX41    | FANCC    | GNA11              | JAK3   | MEN1  | NOTCH3          | POLE    | RNF43  | SRC    | U2AF2  |
| ALK      | BCOR   | CDK12   | DICER1   | FANCD2   | GNAQ               | KAT6A  | MET   | NPM1            | POT1    | ROS1   | SRSF2  | UBA1   |
| AMER1    | BCORL1 | CDK4    | DNM2     | FANCE    | GNAS               | KDM5C  | MITF  | NRAS            | PPM1D   | RUNX1  | STAG2  | VHL    |
| ANKRD26  | BCR    | CDK6    | DNMT3A   | FANCF    | GNB1               | KDM6A  | MLH1  | NSD1            | PPP2R1A | SAMD9  | STAT3  | WT1    |
| APC      | BIRC3  | CDKN1B  | DOT1L    | FANCG    | GREM1              | KDR    | MPL   | NSD2<br>(WHSC1) | PRDM1   | SAMD9L | STAT5B | XP01   |
| AR       | BLM    | CDKN2A  | EED      | FAS      | GRIN2A             | KEAP1  | MRE11 | NTHL1           | PRKAR1A | SDHA   | STK11  | XRCC2  |
| ARAF     | BMPR1A | CDKN2B  | EGFR     | FBXW7    | H3-3A<br>(H3F3A)   | KIT    | MSH2  | NTRK1           | PRKDC   | SDHAF2 | SUFU   | XRCC3  |
| ARID1A   | BRAF   | CDKN2C  | EGLN1    | FGF4     | H3C2<br>(HIST1H3B) | KMT2A  | MSH3  | NTRK2           | PRPF8   | SDHB   | SUZ12  | ZNF217 |
| ARID1B   | BRCA1  | СЕВРА   | ELANE    | FGF6     | HGF                | KMT2B  | MSH6  | NTRK3           | PRSS1   | SDHC   | TAL1   | ZRSR2  |

Patient Name: Page 8 of 9



| ARID2 | BRCA2  | CHEK1  | EP300 | FGFR1 | HNF1A    | KMT2C   | MTOR  | PAK3   | PTCH1  | SDHD    | TCF3               | - |
|-------|--------|--------|-------|-------|----------|---------|-------|--------|--------|---------|--------------------|---|
| ASXL1 | BRIP1  | CHEK2  | EPAS1 | FGFR2 | HOXB13   | KMT2D   | MUTYH | PALB2  | PTEN   | SETBP1  | TENT5C<br>(FAM46C) | - |
| ATM   | втк    | CIC    | EPCAM | FGFR3 | HRAS     | KRAS    | MYC   | PAX5   | PTPN11 | SETD2   | TERC               | - |
| ATR   | CALR   | CREBBP | EPHA3 | FGFR4 | HSP90AA1 | LRP1B   | MYCL  | PBRM1  | RAC1   | SF3B1   | TERT               | - |
| ATRX  | CARD11 | CRLF2  | EPHA5 | FH    | ID3      | MAP2K1  | MYCN  | PDGFRA | RAD21  | SMAD2   | TET2               | - |
| AURKA | CBL    | CSF1R  | ERBB2 | FLCN  | IDH1     | MAP2K2  | MYD88 | PDGFRB | RAD50  | SMAD4   | TGFBR2             | - |
| AURKB | CBLB   | CSF3R  | ERBB3 | FLT3  | IDH2     | MAP2K4  | NBN   | PHF6   | RAD51  | SMARCA4 | TMEM127            | - |
| AURKC | CBLC   | CTCF   | ERBB4 | FLT4  | IGF1R    | MAP3K1  | NF1   | PIK3CA | RAD51C | SMARCB1 | TNFAIP3            | - |
| AXIN1 | CCND1  | CTNNA1 | ERG   | FOXL2 | IKZF1    | MAP3K14 | NF2   | PIK3R1 | RAD51D | SMC1A   | TNFRSF14           | - |
| AXIN2 | CCND3  | CTNNB1 | ESR1  | FUBP1 | IKZF3    | MAPK1   | NFE2  | PIK3R2 | RAF1   | SMC3    | TP53               | - |

### **RNA Fusions/Expression**

| Fusion/Expression |      |                  |        |      |       |        |       |       |        |        |        |        |        |       |         |      |
|-------------------|------|------------------|--------|------|-------|--------|-------|-------|--------|--------|--------|--------|--------|-------|---------|------|
| ABL1              | BCL2 | CCND1            | CREBBP | EGFR | ETV4  | FGFR2  | F0X01 | IKZF3 | MAP3K1 | МҮН9   | NTRK3  | PAX5   | PDGFRB | PTK2B | ROS1    | TAL1 |
| ABL2              | BCL6 | CD274<br>(PD-L1) | CRLF2  | EPOR | ETV5  | FGFR3  | FUS   | JAK2  | месом  | NOTCH1 | NUP214 | PBX1   | PICALM | RARA  | RUNX1   | TCF3 |
| AKT3              | BRAF | CBL              | CSF1R  | ERG  | ETV6  | FIP1L1 | GLI1  | KMT2A | MRTFA  | NTRK1  | NUP98  | PCM1   | PIGA   | RET   | RUNX1T1 | TFG  |
| ALK               | CBFB | CIC              | DUSP22 | ETV1 | FGFR1 | FLT3   | HLF   | LYN   | MYC    | NTRK2  | P2RY8  | PDGFRA | PML    | RHOA  | STAT6   | TYK2 |

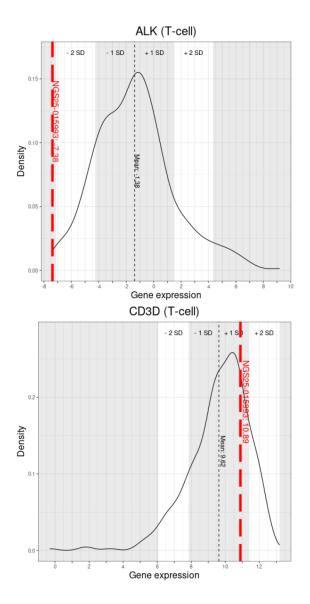
#### Reference

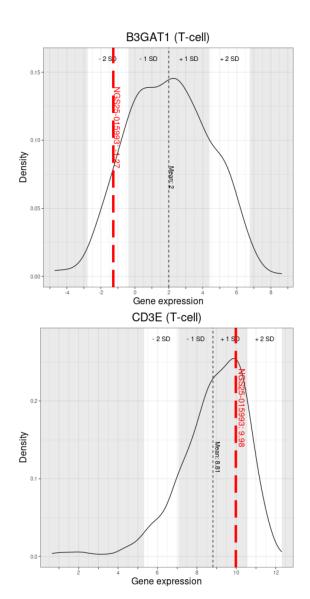
- 1. New insights into the biology of T-cell lymphomas. Iqbal J, Inghirami G, Chan WC. Blood. 2024 Oct 31;144(18):1873-1886. doi: 10.1182/blood.2023021787. PMID: 39213420.
- 2. Update on T-Cell Lymphoma Epidemiology. Chen JJ, Tokumori FC, Del Guzzo C, Kim J, Ruan J. Curr Hematol Malig Rep. 2024 Jun;19(3):93-103 doi: 10.1007/s11899-024-00727-w. Epub 2024 Mar 7. PMID: 38451372.
- T cell lymphoma: time to make discoveries and advance treatment. Ishitsuka K. Int J Hematol. 2023 Apr;117(4):473-474. doi: 10.1007/s12185-023-03573-3. Epub 2023 Mar 14. PMID: 36918503.
- 4. Hepatosplenic T-cell lymphoma: treatment challenges. Bron D, De Leval L, Michiels S, Wittnebel S; EuroBloodNet for rare diseases. Curr Opin Oncol. 2021 Sep 1;33(5):406-411. doi: 10.1097/CCO.000000000000775. PMID: 34409955.

#### **Electronic Signature**

Maher Albitar, M.D.

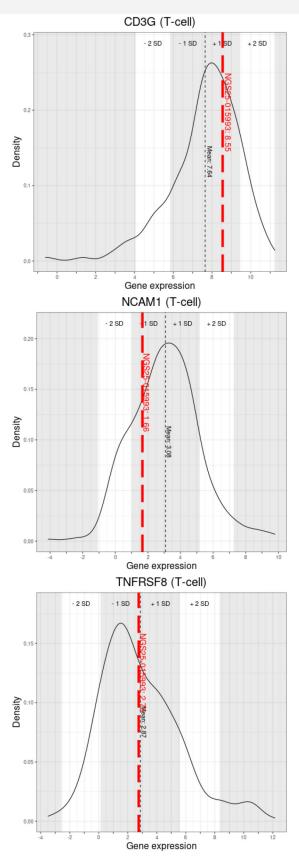
The test (sample processing, sequencing and data generation) was performed at Genomic Testing Cooperative, LCA, 25371 Commercentre Drive Lake Forest, CA 92630. Medical Director Maher Albitar, M.D. Analysis of the data was performed by Genomic Testing Cooperative, LCA, 25371 Commercentre Drive, Lake Forest, CA 92630. Medical Director: Maher Albitar, M.D. (CLIA #: 05D2111917 CAP #: 9441574). The signing pathologist is fully responsible for the accuracy and interpretation of results and the release of this report.

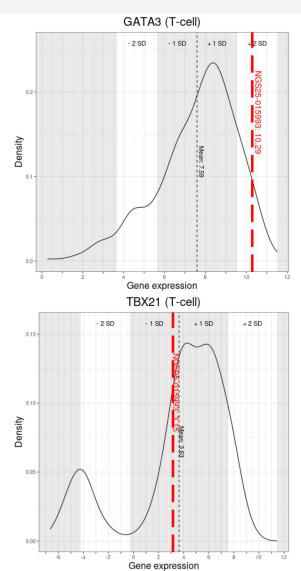

The test was developed and its performance characteristics have been determined by Genomic Testing Cooperative, LCA. This test has not been approved by the FDA. The FDA has determined such clearance or approval is not necessary. This laboratory is CLIA certified to perform high complexity clinical testing.


Patient Name: Page 9 of 9

# **Additional Report Information**

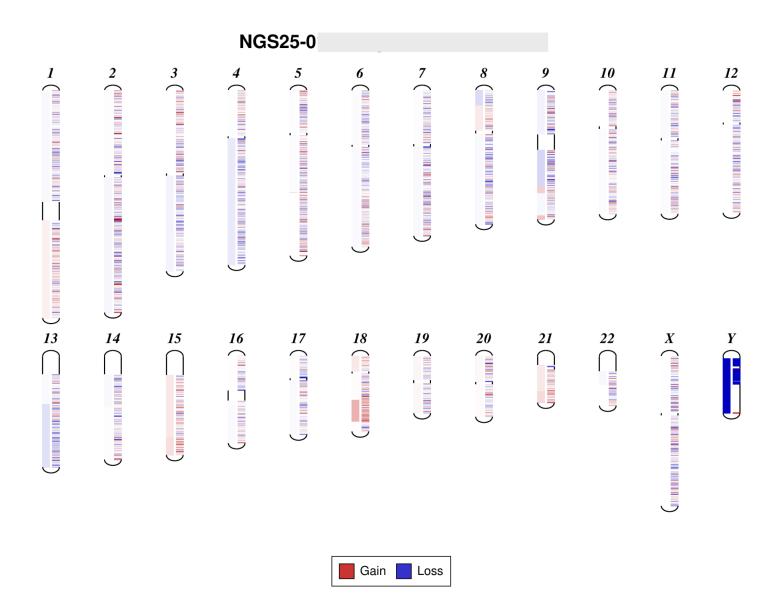
## **RNA Expression Plots**


These plots represent the distribution of the expression in log2 transformed TPM (transcript per million) for each gene across GTC's history for the specified disease. The mean for each distribution is denoted by the black dotted line, while the alternating shaded areas depict the standard deviation. The expression for the current patient is marked by the red dotted line.






# **Additional Report Information**


RNA Expression Plots





# **Additional Report Information**

**Chromosomal Abnormality Graph** 

