

BONE MARROW MICROENVIRONMENT OVERLAP BETWEEN VEXAS AND MYELODYSPLASTIC SYNDROME DEMONSTRATED BY TARGETED TRANSCRIPTOMIC AND ARTIFICIAL INTELLIGENCE

Maher Albitar¹, Andrew IP², Hong Zhang³, Sally Agersborg¹, Adam Albitar¹, Ahmed Charifa¹, Andrew Pecora², David Siegel², Andre Goy²

¹Genomic Testing Cooperative, CA, United State, ²John Theurer Cancer Center, Hackensack, NJ, United States, ³Georgia Southern University, Statesboro, GA, United States.

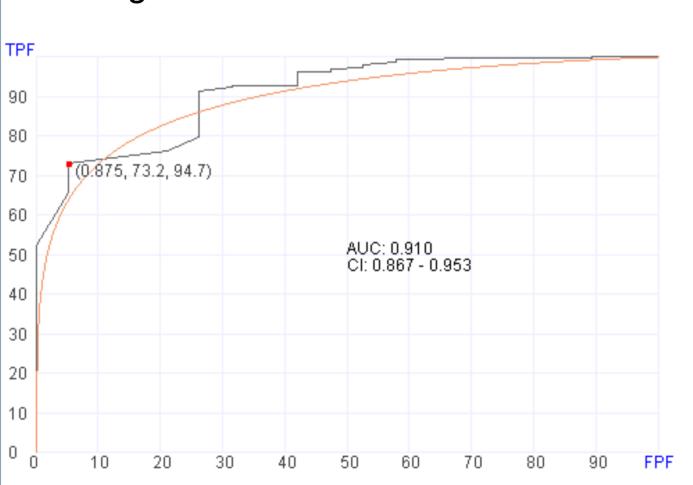
INTRODUCTION

VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is an inflammatory process that involves bone marrow (BM). Active inflammation is also a major feature of the microenvironment in the BM of patients with myelodysplastic syndrome (MDS). Patients with VEXAS frequently have signs and symptoms similar to MDS. Some of VEXAS patients develop overt MDS and some may develop acute myeloid leukemia. Exploring the biological basis for this overlap may help in developing therapeutic approaches for treating this disease.

AIM

We explored using artificial intelligence (AI) approach and compared the transcriptomic profile of the BM from VEXAS patients (N=59) with the transcriptional profile of BM from MDS patients (N=1021) and from the BM of individuals without specific diagnostic abnormality or were presenting with CHIP (clonal hematopoiesis of indeterminate potential) only (N=1030) (Normal).

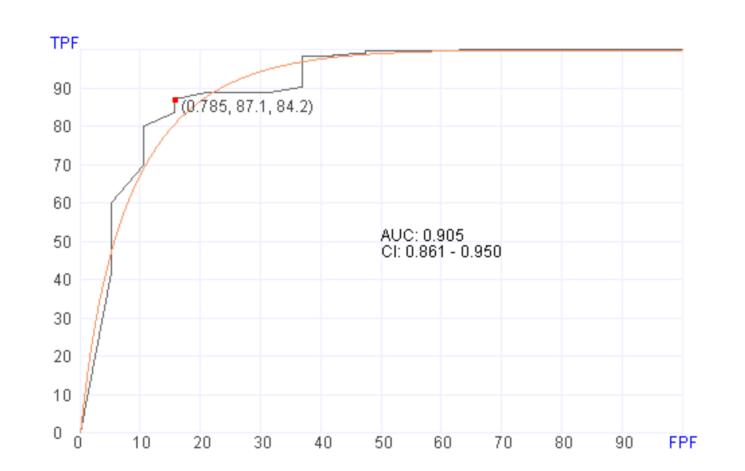
METHOD


RNA was extracted from the bone marrow samples from patients with VEXAS (N=59), MDS (N=1030), and Normal (1030). Most of samples considered normal had clinical reason for testing bone marrow including staging or history of hematologic neoplasm or cytopenia but molecularly were classified as CHIP. The RNA was sequenced by next generation sequencing (NGS) using a targeted RNA panel of 1600 genes. Hybrid capture sequencing library preparation was used, and RNA was quantified using transcript per million (TPM). To compare between the three groups, we used the RNA expression levels in an AI model based on Bayesian statistics and random forest. Bayesian statistics were used to rank the genes that distinguish between groups, then random forest was used to establish the signatures that distinguish between the groups. Two thirds of the samples were used for training and one third was used for testing the models.

RESULTS

Developing a Transcription signature for VEXASb Vs Normal:

8 genes: SF3A1, SMAD5, PRPF8, MCM3AP, NFYC, FGFR1OP, PPM1D, THRA.


Testing set

- Splicing: SF3A1, PRPF8, MCM3AP
- <u>Transcription / signaling</u>: NFYC, THRA,
 SMAD5, PPM1D
- Centrosomal gene involved in various cellular functions including cell cycle regulation: FGFR10P
- All these genes are overexpressed in VEXAS and in MDS

Developing a Transcription signature for VEXASb Vs MDS:

40 genes Testing set

- <u>Inflammatory and immune response</u>: IL1R1, ITGAM, MMP9, MAP2K6, LCP1, WDR1
- Cell differentiation: BCOR, MN1, DNTT, TG
- Cell growth and proliferation: CDKN1C,
 WRN, PKM, RANBP17, ANPEP, NEURL1
- <u>Transcription factors and epigenetic</u>
 <u>regulators:</u> MN1, BCOR, NUTM2A, BCL7A

453 genes showed significant (LogFDR <- 3) difference in the level of expression between VEXAS and normal.

Example: Top genes

Gene	Median VEXAS	Median Normal	LogFDR	
AFF3	2.3225	3.3393	-Infinity	
BCOR	4.7956	5.3032	-Infinity	
CD79B	2.9984	4.226	-Infinity	
DNTT	0.5058	2.1748	-Infinity	
DTX1	1.4097	2.6487	-Infinity	
IRF4	2.7095	3.6212	-Infinity	
NEURL1	1.0149	1.6881	-Infinity	
PAX5	0.9699	1.9901	-Infinity	
PPM1D	4.1785	4.5994	-Infinity	
TCL1A	0.4985	1.8131	-Infinity	
MRE11	4.6428	5.1056	-12.7785	
NAMPT	6.743	1.4074	-12.7785	
LUC7L2	4.8163	0.7856	-12.4775	
МСМЗАР	4.1358	0.6439	-12.4775	
NFYC	3.8048	0.5655	-12.4775	
PRPF8	4.9629	0.7807	-12.4775	
SF3A1	4.9241	0.7736	-12.4775	
AKAP9	5.4141	5.9079	-12.3014	
THRA	3.754	0.5899	-12.3014	
SMAD5	2.7991	0.4458	-12.1764	
EVI2A	4.1187	0.6973	-12.0003	
RGS7	0.2838	0.6581	-11.8243	

All genes that were significantly abnormal in VEXAS as compared with normal were also significantly abnormal in MDS VS Normal

abnormal in MDS VS Normal					
Gene	Median MDS	Median Normal	LogFDR		
AFF3	2.8539	3.3393	-Infinity		
BCOR	5.1925	5.3032	-2.29533		
CD79B	3.639	4.226	-Infinity		
DNTT	1.9184	2.1748	-0.15185		
DTX1	2.0435	2.6487	-Infinity		
IRF4	3.2481	3.6212	-Infinity		
NEURL1	1.4997	1.6881	-4.10901		
PAX5	1.315	1.9901	-Infinity		
PPM1D	4.4383	4.5994	-10.5771		
TCL1A	1.0745	1.8131	-Infinity		
MRE11	4.9703	5.1056	-6.94341		
NAMPT	3.8449	1.4074	-Infinity		
LUC7L2	2.9065	0.7856	-Infinity		
МСМЗАР	2.4994	0.6439	-Infinity		
NFYC	2.0881	0.5655	-Infinity		
PRPF8	2.9506	0.7807	-Infinity		
SF3A1	2.8446	0.7736	-Infinity		
AKAP9	5.7507	5.9079	-9.75814		
THRA	2.2289	0.5899	-Infinity		
SMAD5	1.7201	0.4458	-Infinity		
EVI2A	2.486	0.6973	-Infinity		
RGS7	0.5376	0.6581	-2.76276		

152 genes were significantly different (LogFDR <-3) between MDS and VEXAS.

Example: Top genes

	Example: Top genee		
Gene	Median VEXAS	Median MDS	LogFDR
DNTT	0.5058	1.9184	-Infinity
RANBP17	1.469	2.2263	-Infinity
MN1	1.2671	2.2151	-12.1764
BCOR	4.7956	5.1925	-9.83057
CDKN1C	2.3364	3.1365	-8.75607
IL1R1	4.4487	3.5507	-8.72994
MAP2K6	4.6377	3.9082	-8.61839
NEURL1	1.0149	1.4997	-8.4564
NUTM2A	2.4177	2.9505	-8.26836
TG	2.4293	1.6449	-8.00891
ITGAM	7.2563	6.4354	-7.7228
TENM1	3.6896	2.8373	-7.70597
WDR1	7.1181	6.7755	-7.68773
LCP1	8.1054	7.4678	-7.61619
BCL7A	2.0765	2.5381	-7.49879
CAPZB	6.8975	6.5675	-7.4709
WRN	4.4629	4.8281	-7.39126
MMP9	8.0862	6.874	-7.28458
ANPEP	7.0019	6.3312	-7.20205
MRE11	4.6428	4.9703	-6.88366
ITGB4	3.1064	2.1481	-6.77037
LAMP2	6.3407	5.8468	-6.64824
PKM	7.8837	7.4864	-6.60453
GSN	6.9577	6.4272	-6.48027
NUMA1	5.8068	6.0605	-6.45865
TCEA1	5.6267	5.9469	-6.34848
PRDM16	0.4391	0.9418	-6.27372
CD79B	2.9984	3.639	-6.25244
MME	5.144	4.1383	-6.24183
ZFTA(C11orf 95)	1.4075	1.876	-6.22212
AKAP9	5.4141	5.7507	-6.19586
DCLK2	0.6196	1.169	-6.03253
IRF4	2.7095	3.2481	-5.93576
ARG1	7.2101	6.2849	-5.88229
TCL1A	0.4985	1.0745	-5.74914

CONCLUSIONS

- > Bone marrow microenvironment in patients with VEXAS is significantly abnormal despite the clinical manifestation of VEXAS are more related lungs, skin, blood vessels and joints
- > The bone marrow microenvironment in VEXAS mimics that seen in myelodysplastic syndrome
- > VEXAS and MDS share similar abnormalities inflammatory and immune response, cell proliferation and differentiation and various transcription factors.
- > Changes and interaction between 8 genes involved in splicing and transcription regulation provide highly reliable biomarkers for the diagnosis of VEXAS when used in machine learning algorithm.
- > Therapeutic approaches targeting these abnormalities specific abnormalities may help in ameliorating the clinical manifestation of VEXAS

CONTACT INFORMATION

Maher Albitar, MD

Genomic Testing Cooperative, LCA.

25371 Commercentre Dr., Lake Forest, CA 92630

Phone: 657-202-5950/FAX: 949-301-9719

Mobile: 949.275.7564

malbitar@genomictestingcooperative.com