

DEVELOPING TRANSCRIPTOMIC SIGNATURE FOR IDH1 AND IDH2 ACUTE LEUKEMIA AND THE DEMONSTRATION OF HIGH PREVALENCE OF THESE SIGNATURES IN MUTATION-NEGATIVE LEUKEMIA

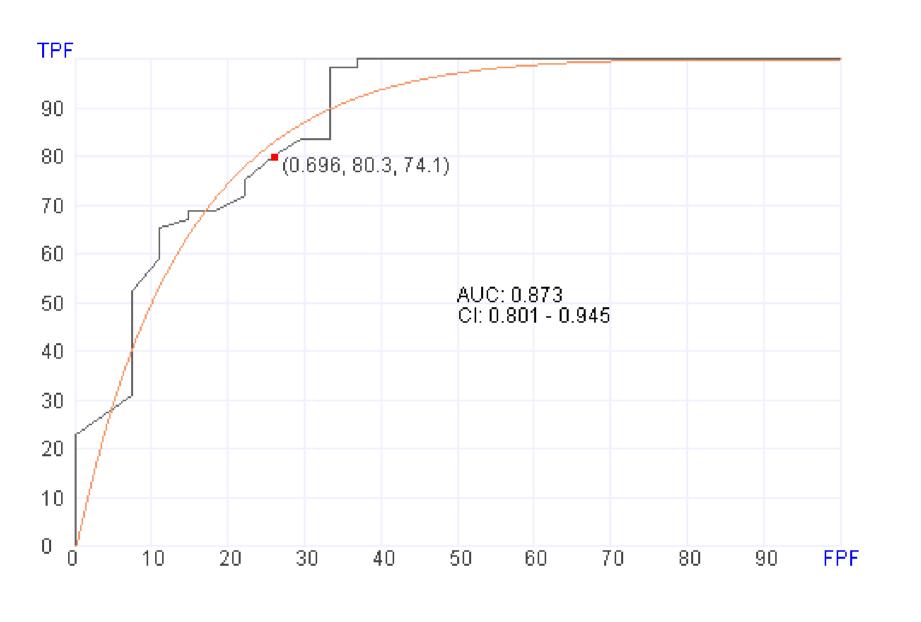
Maher Albitar¹, Hong Zhang², Gustavo Rivero³, David Swoboda³, Sally Agersborg¹, Adam Albitar¹, Ahmed Charifa¹, Andrew IP⁴, Andre Goy⁴, Andrew Pecora⁴, David Siegel⁴, Kelly West Fitzpatrick⁴, Katherine Linder⁴, Jamie Koprivnikar⁴, and James McCloskey⁴

¹Genomic Testing Cooperative, CA, United State, ²Georgia Southern University, Statesboro, GA, United States, ³Tampa General Hospital Cancer Institute, Tampa, FL, United States, ⁴John Theurer Cancer Center, Hackensack, NJ, United States

INTRODUCTION

Despite multiple studies, the impact of IDH1 and IDH2 (IDH1/2) mutations on the overall biology and clinical outcome of acute myeloid leukemia (AML) remains controversial and not explicitly determined. This may is likely due to the fact that AML with IDH1/2 mutations are not significantly biologically different from average AML. However, current data suggests that adding IDH inhibitors to a combination therapy improves the outcome of patients with IDH1/2 mutations. We explored transcriptional profile for cases with IDH1/2 mutations and compared to AML cases without mutations.

AIM

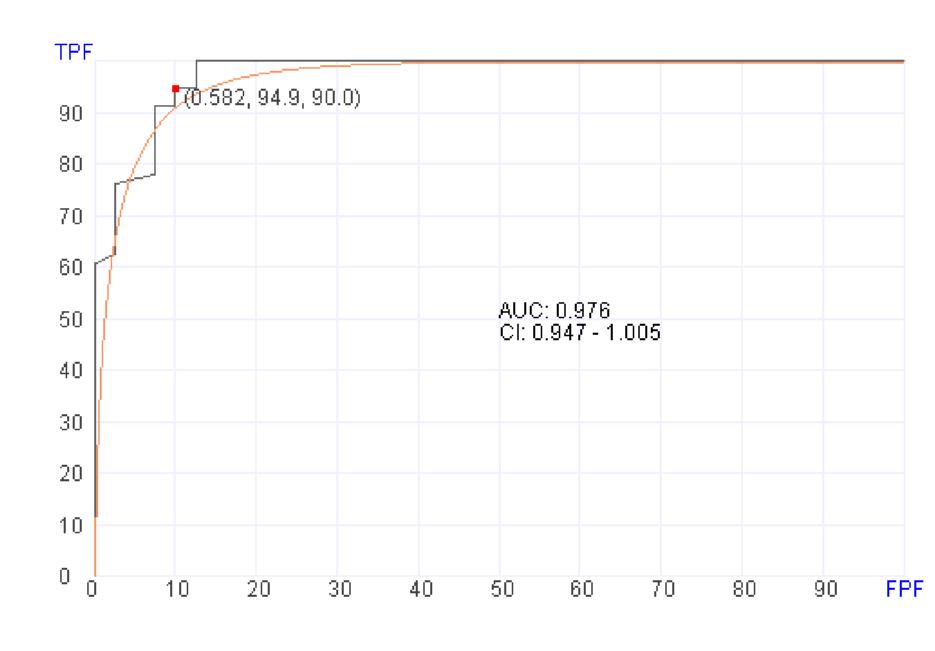

While the first aim is to define the transcriptional profile of IDH1/2 AML cases, we also aimed to explore if the specific IDH1/2 transcription profile can also be seen in AML cases without IDH1/2 mutations. We explored the potential of using artificial intelligence (AI) and transcriptomic data to define a specific transcriptomic signature for IDH1-positive (IDH1p) and IDH2positive (IDH2p) AML. Then we used this signature to screen IDH1/2-negative acute myeloid leukemia (AMLn).

METHOD

RNA was extracted from the bone marrow samples of 1186 cases of AML or advanced myelodysplastic syndrome with increased blasts. The RNA was sequenced by next generation sequencing (NGS) using a targeted RNA panel of 1600 genes. IDH1 mutation was detected in 83 cases (7%) and IDH2 was detected in 120 (10%). A set including 83 cases with IDH1 mutation and 156 random AMLn was isolated to develop IDH1 transcriptomic signature. A second set including the 120 cases with IDH2 mutation and 180 random AMLn cases was used for developing the IDH2 transcriptomic signature. The rest of the cases were used for testing these signatures. Bayesian statistics were used to rank the genes that distinguish between two groups, then random forest was used to establish the signatures. Two thirds of the sets used for developing the signatures were used for training and one third was used for testing. A score for the combination of relevant genes with a cutoff point was established. The same Bayesian/random forest algorithm was used to test the rest of the AML cases.

Developing IDH1 transcriptomic Signature

8 genes: TRAF3, TRAF2, HMGB1, CDK2, LRRC59, MEAF6, CREB1, RPN.

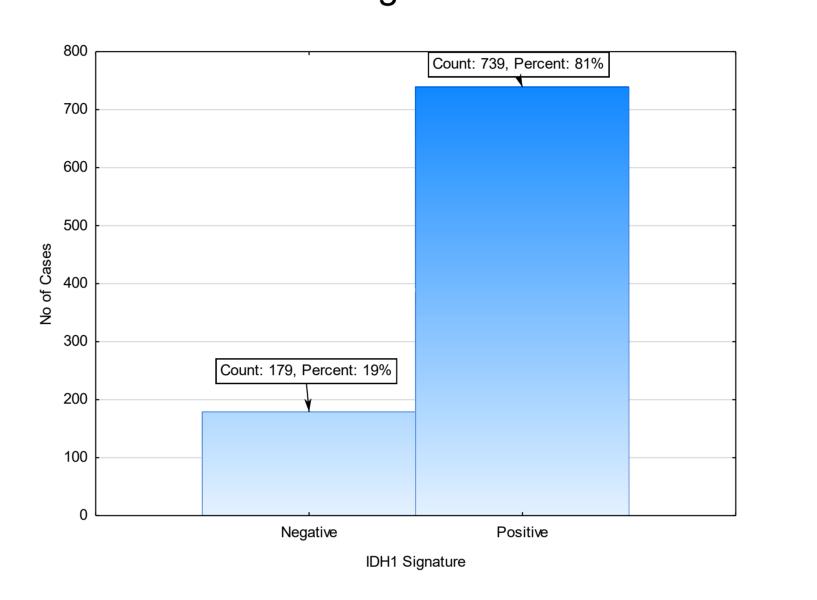


Biological Relevance of IDH1 signature genes

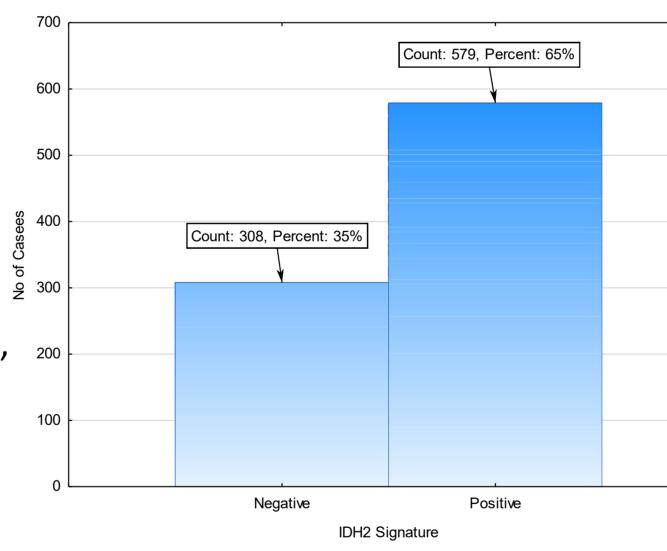
- Immune/inflammatory activation: HMGB1, TRAF2, TRAF3
- Transcriptional activation: CREB1.
- Proliferation execution (Cell-cycle progression): CDK2
- Proteasomal activity: RPN
- RNA-protein trafficking: LRRC59:
- Histone acytylation and gene expression: MEAF6

Developing IDH2 transcriptomic Signature

35 genes: TRAF3, TRAF2, STRN, TBX21, TRAF5, EVI2A, NAMPT, NFYC, PRPF40B, SF3A1, SMAD5, CDK2, LUC7L2, MCM3AP, PRPF8, THRA, SMC3, ACVR1, KIF5B, MDS2, RAD21, RPL21, PSIP1, JAK2, PTPA(PPP2R4), SUZ12, TCL6, RAC2, LRRC59, YWHAE, PTBP1, TPR, TMEM230, HSP90AA1, RNF217-AS1(STL).


RNA splicing / processing (SF3A1, PRPF8, PRPF40B, PTBP1, 200

Biological Relevance of IDH2 signature genes


- LUC7L2) Chromatin / cohesin complexes (SUZ12, SMC3, RAD21, PSIP1)
- Immune-NF-κB signaling (TRAF2/3/5, RAC2, TBX21)
- Oncogenic drivers (KIF5B, STRN, TPR, YWHAE).

81% of mutation-negative had IDH1

RESULTS

65% of mutation-negative had IDH2 signature

CONCLUSIONS

- AML with IDH1/IDH2 mutations may overlap biologically with other types of AML
- Despite this overlap, transcriptomic signatures can be developed for IDH1p and IDH2p cases using machine learning.
- Inflammatory and splicing genes play a major role in distinguishing IDH1/IDH2-positive cases.
- 80% of AML cases without IDH1 mutation show IDH1 transcription signature
- 65% of AML cases without IDH2 mutation show IDH2 transcription signature
- The data justify the performance of clinical trials adding IDH1or IDH2 inhibitors to combination therapy in patients with positive IDH1/IDH2 signatures.

Top 35 genes distinguish IDH1-

þ	ositive	cases	
	IDH1-	IDH1-	
Gene	Positive	negative	LogFDR
	(Median)	(median)	
TRAF2	1.4605	4.3508	-Infinity
TRAF3	1.0716	4.2172	-Infinity
TRAF5	1.1872	4.358	-Infinity
RPN1	6.6193	7.1118	-12.301
CDK2	4.2887	4.8724	-12.176
FANCE	2.5989	3.3214	-10.933
MEAF6	3.9677	4.5641	-10.733
CLTA	5.9608	6.4877	-9.3768
HDAC2	4.7462	5.3278	-9.0416
PRKAR1A	6.0745	6.7528	-8.9393
BTK	4.7727	5.4268	-8.9269
C2CD2L	3.862	4.4666	-8.8005
PRKACA	4.6919	5.3091	-8.6962
PCNA	5.7658	6.397	-8.6231
PTPA	4.3241	4.8323	-8.5695
CDK7	4.6822	5.2152	-8.4825
XRCC6	6.637	7.0556	-8.3388
PSIP1	6.3599	6.9234	-8.2184
HSP90AA1	8.0577	8.5639	-8.1143
KIF5B	6.1787	6.6717	-7.9738
MYH11	0.6342	1.3356	-7.9114
CHMP2B	4.6936	5.2822	-7.8639
SET	6.8664	7.3975	-7.8251
TMEM230	4.6764	5.1495	-7.797
PPM1D	4.5207	5.046	-7.7886
STRN	4.1804	4.6622	-7.7733
SKP2	4.1348	4.7379	-7.5762
JAK2	5.3367	5.9122	-7.4847
LRRC59	5.5136	6.044	-7.4642
SMC3	6.0238	6.462	-7.4102
MSH3	4.329	4.8497	-7.2369
COMMD1	4.7824	5.2278	-7.223
WEE1	4.5009	5.0559	-7.1429
BLM	4.1564	4.708	-7.0357
THRA	2.0127	0.0186	-6.991

Top 35 genes distinguish IDH2-

positive cases				
	IDH2-	IDH2-		
Gene	positive	negative	LogF[
	(Median)	(Median)		
ACVR1C	0.9798	0	-Infin	
EGFR	1.1708	0.0904	-Infin	
EVI2B	2.2585	0.0878	-Infin	
FGF9	0.9486	0.0476	-Infin	
FGFR10P	1.5317	0	-Infin	
HAS2	0.8747	0.0499	-Infin	
LUC7L2	1.4756	0.0259	-Infin	
MAP2	0.7401	0.0378	-Infin	
МСМЗАР	1.2762	0.0112	-Infin	
NAMPT	1.7003	0.1093	-Infin	
NFYC	1.0098	0.0147	-Infin	
PRPF8	1.5216	0.0401	-Infin	
RPL21	1.4071	0	-Infin	
SF3A1	1.4088	0.0212	-Infin	
SHC2	0.7877	0.031	-Infin	
SMAD5	0.9411	0.0071	-Infin	
THRA	1.0728	0.0055	-Infin	
NFRSF17	1.4875	0.0221	-Infin	
ACVR1	0.8442	0	-12.7	
DIRAS3	1.1457	0.0766	-12	
CXXC4	0.7454	0.0224	-11.3	
PRPF40B	0.4057	0	-11.2	
DKK2	0.6848	0.0577	-11.1	
TBX21	0.538	0	-10.9	
RNF217- AS1	0.5262	0	-10.49	
RHOD	0.6182	0.0511	-10.2	
EVI2A	1.1763	0.0909	-10.0	
CTRB2	0.3301	0	-9.64	
MDS2	0.4501	0	-9.56	
FZD10	0.3979	0.0053	-9.40	
EPHA7	0.3177	0	-8.40	
FGF6	0.4405	0.0396	-7.98	
IL3	0.5867	0.0203	-7.57	
RASGRF1	0.5687	0.0586	-6.84	
NTF3	0.2879	0	-6.37	

CONTACT INFORMATION

Maher Albitar, MD

Genomic Testing Cooperative, LCA.

25371 Commercentre Dr., Lake Forest, CA 92630

Phone: 657-202-5950/FAX: 949-301-9719

Mobile: 949.275.7564

malbitar@genomictestingcooperative.com